Skip to main content

Advertisement

Log in

Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca2+-permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5ˊ-iodoresiniferatoxin (5ˊ-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca2+ imaging that TRPV1 regulates Ca2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Arch 451:143–150. https://doi.org/10.1007/s00424-005-1457-8

    Article  CAS  PubMed  Google Scholar 

  2. Ortíz-Rentería M, Juárez-Contreras R, González-Ramírez R et al (2018) TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1715972115

    Article  PubMed  Google Scholar 

  3. Choi JY, Lee HY, Hur J et al (2018) TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol Res 10:216–224. https://doi.org/10.4168/aair.2018.10.3.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Majhi RK, Sahoo SS, Yadav M et al (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 282:2661–2681. https://doi.org/10.1111/febs.13306

    Article  CAS  PubMed  Google Scholar 

  5. Yang F, Ma L, Cao X et al (2014) Divalent cations activate TRPV1 through promoting conformational change of the extracellular region. J General Physiol 143:91–103. https://doi.org/10.1085/jgp.201311024

    Article  CAS  Google Scholar 

  6. Ramirez G, Coletto L, Sciorati C et al (2018) Ion channels and transporters in inflammation: special focus on TRP channels and TRPC6. Cells 7:70. https://doi.org/10.3390/cells7070070

    Article  CAS  PubMed Central  Google Scholar 

  7. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647. https://doi.org/10.1146/annurev.physiol.68.040204.100431

    Article  CAS  PubMed  Google Scholar 

  8. Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harbor Perspect Biol 2:a003962–a003962. https://doi.org/10.1101/cshperspect.a003962

    Article  CAS  Google Scholar 

  9. Vay L, Gu C, McNaughton PA (2012) The thermo-TRP ion channel family: Properties and therapeutic implications. Br J Pharmacol 165:787–801. https://doi.org/10.1111/j.1476-5381.2011.01601.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Venkatachalam K, Montell C (2007) TRP channels. Ann Rev Biochem 76:387–417. https://doi.org/10.1146/annurev.biochem.75.103004.142819

    Article  CAS  PubMed  Google Scholar 

  11. Smani T, Shapovalov G, Skryma R et al (2015) Functional and physiopathological implications of TRP channels. Biochimica et Biophysica Acta - Molecular Cell Research 1853:1772–1782. https://doi.org/10.1016/j.bbamcr.2015.04.016

    Article  CAS  Google Scholar 

  12. Pla AF, Gkika D (2013) Emerging role of TRP channels in cell migration: From tumor vascularization to metastasis. Front Physiol. https://doi.org/10.3389/fphys.2013.00311

    Article  Google Scholar 

  13. Sukumaran P, Schaar A, Sun Y, Singh BB (2016) Functional role of TRP channels in modulating ER stress and Autophagy. Cell Calcium 60:123–132. https://doi.org/10.1016/j.ceca.2016.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lishko PV, Procko E, Jin X et al (2007) The Ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918. https://doi.org/10.1016/j.neuron.2007.05.027

    Article  CAS  PubMed  Google Scholar 

  15. Devesa I, Planells-Cases R, Fernández-Ballester G et al (2011) Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 4:67–81. https://doi.org/10.2147/JIR.S12978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsuji F, Aono H (2012) Role of transient receptor potential vanilloid 1 in inflammation and autoimmune diseases. Pharmaceuticals 5:837–852. https://doi.org/10.3390/ph5080837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166:510–521. https://doi.org/10.1111/j.1476-5381.2012.01851.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Facer P, Casula MA, Smith GD et al (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:1–12. https://doi.org/10.1186/1471-2377-7-11

    Article  CAS  Google Scholar 

  19. Omari SA, Adams MJ, Geraghty DP (2017) TRPV1 channels in immune cells and hematological malignancies, 1st edn. Elsevier Inc.

  20. Marrone MC, Morabito A, Giustizieri M et al (2017) TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun. https://doi.org/10.1038/ncomms15292

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yoshida A, Furube E, Mannari T et al (2016) TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation. Sci Rep 6:1–11. https://doi.org/10.1038/srep26088

    Article  CAS  Google Scholar 

  22. Felix A, Rosa E a Gestão Documental Como Suporte Ao Governo Eletrônico : Caso Da Secretaria De Estado Da Saúde De Santa Catarina ( Ses / Sc ). 36–50

  23. Silva RO, Bingana RD, Sales TMAL et al (2018) Role of TRPV1 receptor in inflammation and impairment of esophageal mucosal integrity in a murine model of nonerosive reflux disease. Neurogastroenterol Motil 30:1–8. https://doi.org/10.1111/nmo.13340

    Article  CAS  Google Scholar 

  24. Toledo-Mauriño JJ, Furuzawa-Carballeda J, Villeda-Ramírez MA et al (2018) The transient receptor potential vanilloid 1 is associated with active inflammation in ulcerative colitis. Mediators Inflamm 2018:1–7. https://doi.org/10.1155/2018/6570371

    Article  CAS  Google Scholar 

  25. Kitagawa Y, Tamai I, Hamada Y et al (2013) Orally administered selective TRPV1 antagonist, JTS-653, attenuates chronic pain refractory to non-steroidal anti-inflammatory drugs in rats and mice including post-herpetic pain. J Pharmacol Sci 122:128–137. https://doi.org/10.1254/jphs.12276FP

    Article  CAS  PubMed  Google Scholar 

  26. Abdullah H, Heaney LG, Cosby SL, McGarvey LPA (2014) Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity. Thorax 69:46–54. https://doi.org/10.1136/thoraxjnl-2013-203894

    Article  CAS  PubMed  Google Scholar 

  27. Han SB, Kim H, Hyun Cho S et al (2016) Transient receptor potential vanilloid-1 in epidermal keratinocytes may contribute to acute pain in herpes zoster. Acta Dermato-Venereologica 96:319–322. https://doi.org/10.2340/00015555-2247

    Article  CAS  PubMed  Google Scholar 

  28. Cabrera JR, Viejo-Borbolla A, Alcamí A, Wandosell F (2016) Secreted herpes simplex virus-2 glycoprotein G alters thermal pain sensitivity by modifying NGF effects on TRPV1. J Neuroinflamm 13:1–9. https://doi.org/10.1186/s12974-016-0677-5

    Article  CAS  Google Scholar 

  29. Omar S, Clarke R, Abdullah H et al (2017) Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0171681

    Article  CAS  Google Scholar 

  30. Harford TJ, Rezaee F, Scheraga RG et al (2018) Asthma predisposition and respiratory syncytial virus infection modulate transient receptor potential vanilloid 1 function in children’s airways. J Allergy Clin Immunol 141:414–416. https://doi.org/10.1016/j.jaci.2017.07.015 (e4)

    Article  CAS  PubMed  Google Scholar 

  31. Alhmada Y, Selimovic D, Murad F et al (2017) Hepatitis C virus-associated pruritus: etiopathogenesis and therapeutic strategies. World J Gastroenterol 23:743–750. https://doi.org/10.3748/wjg.v23.i5.743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dupuis-Maguiraga L, Noret M, Brun S et al (2012) Chikungunya disease: Infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Neglected Trop Dis. https://doi.org/10.1371/journal.pntd.0001446

    Article  Google Scholar 

  33. Silva LA, Dermody TS (2017) Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Investig 127:737–749

    Article  Google Scholar 

  34. Tanabe ISB, Tanabe ELL, Santos EC, Martins WV (2018) Cellular and molecular immune response to Chikungunya virus infection. Front Cell Infect Microbiol 8:1–15. https://doi.org/10.3389/fcimb.2018.00345

    Article  CAS  Google Scholar 

  35. Nayak TK, Mamidi P, Kumar A et al (2017) Regulation of viral replication, apoptosis and pro-inflammatory responses by 17-aag during chikungunya virus infection in macrophages. Viruses. https://doi.org/10.3390/v9010003

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subudhi BB, Chattopadhyay S, Mishra P, Kumar A (2018) Current strategies for inhibition of Chikungunya infection. Viruses 10

  37. Franken L, Schiwon M, Kurts C (2016) Microreview Macrophages: sentinels and regulators of the immune system. Cell Microbiol 18:475–487. https://doi.org/10.1111/cmi.12580

    Article  CAS  PubMed  Google Scholar 

  38. Pratheek BM, Suryawanshi AR, Chattopadhyay S, Chattopadhyay S (2015) In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8+ T cell response and advancement of epitope based immunotherapy for CHIKV infection. Infect Genetics Evolut. https://doi.org/10.1016/j.meegid.2015.01.017

    Article  Google Scholar 

  39. Nayak TK, Mamidi P, Sahoo SS et al (2019) P38 and JNK mitogen-activated protein kinases interact with Chikungunya virus non-structural protein-2 and regulate TNF induction during viral infection in macrophages. Front Immunol 10:1–15. https://doi.org/10.3389/fimmu.2019.00786

    Article  CAS  Google Scholar 

  40. Bertin S, Aoki-Nonaka Y, De Jong PR et al (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+T cells. Nat Immunol 15:1055–1063. https://doi.org/10.1038/ni.3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khalil M, Alliger K, Weidinger C et al (2018) Functional role of transient receptor potential channels in immune cells and epithelia. Front Immunol 9:1–7

    Article  Google Scholar 

  42. Fernandes ES, Liang L, Smillie S-J et al (2012) TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J Immunol 188:5741–5751. https://doi.org/10.4049/jimmunol.1102147

    Article  CAS  PubMed  Google Scholar 

  43. Clark N, Keeble J, Fernandes ES et al (2007) The transient receptor potential vanilloid 1 (TRPV1) receptor protects against the onset of sepsis after endotoxin. FASEB J 21:3747–3755. https://doi.org/10.1096/fj.06-7460com

    Article  CAS  PubMed  Google Scholar 

  44. Han SS, Keum YS, Chun KS, Surh YJ (2002) Suppression of phorbol ester-induced NF-κB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch Pharmacal Res 25:475–479. https://doi.org/10.1007/BF02976605

    Article  CAS  Google Scholar 

  45. Miyake T, Shirakawa H, Nakagawa T, Kaneko S (2015) Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. GLIA 63:1870–1882. https://doi.org/10.1002/glia.22854

    Article  PubMed  Google Scholar 

  46. Sappington RM, Calkins DJ (2008) Contribution of TRPV1 to microglia-derived IL-6 and NFκB translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 49:3004–3017. https://doi.org/10.1167/iovs.07-1355

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Wang DH (2009) Aggravated renal inflammatory responses in TRPV1 gene knockout mice subjected to DOCA-salt hypertension. Am J Physiol-Renal Physiol 297:F1550–F1559. https://doi.org/10.1152/ajprenal.00012.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuji F, Murai M, Oki K et al (2010) Effects of SA13353, a transient receptor potential vanilloid 1 agonist, on leukocyte infiltration in lipopolysaccharide-induced acute lung injury and ovalbumin-induced allergic airway inflammation. J Pharmacol Sci 112:487–490. https://doi.org/10.1254/jphs.09295SC

    Article  CAS  PubMed  Google Scholar 

  49. Hsieh WS, Kung CC, Huang SL et al (2017) TDAG8, TRPV1, and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-09200-6

    Article  CAS  Google Scholar 

  50. Fernandes ES, Brito CXL, Teixeira SA et al (2014) TRPV1 antagonism by Capsazepine modulates innate immune response in mice infected with plasmodium berghei ANKA. Mediators Inflamm. https://doi.org/10.1155/2014/506450

    Article  PubMed  PubMed Central  Google Scholar 

  51. Helyes Z, Elekes K, Nemeth J et al (2007) Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 292:L1173–L1181. https://doi.org/10.1152/ajplung.00406.2006

    Article  CAS  PubMed  Google Scholar 

  52. White JPM, Urban L, Nagy I (2011) TRPV1 function in health and disease. 130–144

  53. Gouin O, L’Herondelle K, Lebonvallet N et al (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8:644–661. https://doi.org/10.1007/s13238-017-0395-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fox JM, Diamond MS (2016) Immune-mediated protection and pathogenesis of Chikungunya virus. J Immunol. https://doi.org/10.4049/jimmunol.1601426

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kulkarni SP, Ganu M, Jayawant P et al (2017) Regulatory T cells and IL-10 as modulators of chikungunya disease outcome: a preliminary study. Eur J Clin Microbiol Infect Dis 36:2475–2481. https://doi.org/10.1007/s10096-017-3087-4

    Article  CAS  PubMed  Google Scholar 

  56. Chattopadhyay SS, Kumar A, Mamidi P et al (2014) Development and characterization of monoclonal antibody against non-structural protein-2 of chikungunya virus and its applications. J Virol Methods 199:86–94. https://doi.org/10.1016/j.jviromet.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  57. Elokely K, Velisetty P, Delemotte L et al (2016) Understanding TRPV1 activation by ligands: insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci 113:E137–E145. https://doi.org/10.1073/pnas.1517288113

    Article  CAS  PubMed  Google Scholar 

  58. Kumar A, Mamidi P, Das I et al (2014) A Novel 2006 Indian outbreak strain of chikungunya virus exhibits different pattern of infection as compared to prototype strain. PLoS ONE. https://doi.org/10.1371/journal.pone.0085714

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saswat T, Kumar A, Kumar S et al (2015) High rates of co-infection of dengue and chikungunya virus in Odisha and Maharashtra, India during 2013. Infect Genetics Evol 35:134–141. https://doi.org/10.1016/j.meegid.2015.08.006

    Article  Google Scholar 

  60. Raghavendhar S, Patel AK, Kabra SK et al (2019) Virus load and clinical features during the acute phase of Chikungunya infection in children. PLoS ONE 14:1–10. https://doi.org/10.1371/journal.pone.0211036

    Article  CAS  Google Scholar 

  61. Bartholomeusz A, Locarnini S (2006) Associated with antiviral therapy. Antiviral Therapy 55:52–55. https://doi.org/10.1002/jmv

    Article  Google Scholar 

  62. C A-U, Chen M, Hotta H (2018) Time-of-addition and temperature-shift assays to determine particular step(s) in the viral life cycle that is blocked by antiviral substances(s). Bio-protocol 8:1–12. https://doi.org/10.21769/BioProtoc.2830

    Article  Google Scholar 

  63. Sahoo SS, Majhi RK, Tiwari A et al (2019) Transient Receptor Potential Ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Biosci Rep. https://doi.org/10.1042/bsr20191437

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lapointe TK, Basso L, Iftinca MC et al (2015) TRPV1 sensitization mediates postinflammatory visceral pain following acute colitis. Am J Physiol 309:G87–G99. https://doi.org/10.1152/ajpgi.00421.2014

    Article  CAS  Google Scholar 

  65. Lawton SK, Xu F, Tran A et al (2017) N-Arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1. J Immunol (Baltimore, Md: 1950) 199:1465–1475. https://doi.org/10.4049/jimmunol.1602151

    Article  CAS  Google Scholar 

  66. Bassi MS, Gentile A, Iezzi E et al (2019) Transient receptor potential vanilloid 1 modulates central inflammation in multiple sclerosis. Front Neurol 10:1–8. https://doi.org/10.3389/fneur.2019.00030

    Article  Google Scholar 

  67. Westlund KN, Kochukov MY, Lu Y, McNearney TA (2010) Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Mol Pain. https://doi.org/10.1186/1744-8069-6-46

    Article  PubMed  PubMed Central  Google Scholar 

  68. Labadie K (2010) Chikungunya disease in nonhuman primates leads to long-term viral persistence in macrophages. J Clin Invest 120:1–13. https://doi.org/10.1172/JCI40104.894

    Article  Google Scholar 

  69. Venugopalan A, Ghorpade RP, Chopra A (2014) Cytokines in acute chikungunya. PLoS ONE. https://doi.org/10.1371/journal.pone.0111305

    Article  PubMed  PubMed Central  Google Scholar 

  70. Picazo-Juárez G, Romero-Suárez S, Nieto-Posadas AS et al (2011) Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem 286:24966–24976. https://doi.org/10.1074/jbc.M111.237537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sudji IR, Subburaj Y, Frenkel N et al (2015) Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol. Molecules 20:20146–20160. https://doi.org/10.3390/molecules201119682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Frenkel N, Makky A, Sudji IR et al (2014) Mechanistic investigation of interactions between steroidal saponin digitonin and cell membrane models. J Phys Chem B 118:14632–14639. https://doi.org/10.1021/jp5074939

    Article  CAS  PubMed  Google Scholar 

  73. Mitra S, Dungan SR (2001) Cholesterol solubilization in aqueous micellar solutions of quillaja saponin, bile salts, or nonionic surfactants. J Agric Food Chem 49:384–394. https://doi.org/10.1021/jf000568r

    Article  CAS  PubMed  Google Scholar 

  74. Szoke É, Börzsei R, Tóth DM et al (2010) Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628:67–74. https://doi.org/10.1016/j.ejphar.2009.11.052

    Article  CAS  PubMed  Google Scholar 

  75. Liu M, Huang W, Wu D, Priestley JV (2006) TRPV1, but not P2X3, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci 24:1–6. https://doi.org/10.1111/j.1460-9568.2006.04889.x

    Article  CAS  PubMed  Google Scholar 

  76. Sághy É, Szoke É, Payrits M et al (2015) Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacol Res 100:101–116. https://doi.org/10.1016/j.phrs.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  77. Saha S, Ghosh A, Tiwari N et al (2017) Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate evolution correlates with its snorkeling behaviour and cholesterol interaction. Sci Rep. https://doi.org/10.1038/s41598-017-16780-w

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jeong JH, Lee DK, Liu S, et al (2018) Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake. 1–24

  79. Baboota RK, Singh DP, Sarma SM, et al (2014) Capsaicin Induces ‘“ Brite ”’ Phenotype in Differentiating 3T3-L1 Preadipocytes. 9:1–12. https://doi.org/https://doi.org/10.1371/journal.pone.0103093

  80. Takahashi N, Matsuda Y, Yamada H, et al (2014) Epithelial TRPV1 Signaling Cell Proliferation. 1141–1147. https://doi.org/https://doi.org/10.1177/0022034514552826

  81. To I (2009) Transient Receptor Potential Vanilloid-1 Signaling as a Regulator of Human Sebocyte Biology. https://doi.org/https://doi.org/10.1038/jid.2008.258

  82. Tak PP, Firestein GS (2001) NF- κ B in defense and disease NF- κ B : a key role in inflammatory diseases. 107:7–11

  83. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor perspectives in biology 1:1–10. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  Google Scholar 

  84. Wang Y, Wang DH (2013a) Role of the transient receptor potential vanilloid type 1 channel in renal inflammation induced by lipopolysaccharide in mice. Am J Physiol 304:R1–R9. https://doi.org/10.1152/ajpregu.00163.2012

    Article  CAS  Google Scholar 

  85. Tóth A, Blumberg PM, Chen Z, Kozikowski AP (2004) Design of a high-affinity competitive antagonist of the Vanilloid receptor selective for the calcium entry-linked receptor population. Mol Pharmacol 65:282–291. https://doi.org/10.1124/mol.65.2.282

    Article  PubMed  Google Scholar 

  86. Kárai LJ, Russell JT, Iadarola MJ, Oláh Z (2004) Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J Biol Chem 279:16377–16387. https://doi.org/10.1074/jbc.M310891200

    Article  CAS  PubMed  Google Scholar 

  87. Grant ER, Dubin AE, Zhang SP et al (2002) Simultaneous intracellular calcium and sodium flux imaging in human vanilloid receptor 1 (VR1)-transfected human embryonic kidney cells: a method to resolve ionic dependence of VR1-mediated cell death. J Pharmacol Exp Ther 300:9–17. https://doi.org/10.1124/jpet.300.1.9

    Article  CAS  PubMed  Google Scholar 

  88. Assas BM, Wakid MH, Zakai HA et al (2016) Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 147:292–304. https://doi.org/10.1111/imm.12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim HS, Kwon HJ, Kim GE et al (2014) Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism: capsaicin-induced NK cell dysfunction. Carcinogenesis 35:1652–1660. https://doi.org/10.1093/carcin/bgu091

    Article  CAS  PubMed  Google Scholar 

  90. Szitter I, Pozsgai G, Sandor K et al (2010) The role of transient receptor potential vanilloid 1 (Trpv1) receptors in dextran sulfate-induced colitis in mice. J Mol Neurosci 42:80–88. https://doi.org/10.1007/s12031-010-9366-5

    Article  CAS  PubMed  Google Scholar 

  91. Messeguer A, Planells-Cases R, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 4:1–15. https://doi.org/10.2174/157015906775202995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alawi K, Keeble J (2010) The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol Ther 125:181–195. https://doi.org/10.1016/j.pharmthera.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  93. Wang Y, Wang DH (2013b) TRPV1 ablation aggravates inflammatory responses and organ damage during endotoxic shock. Clin Vaccine Immunol 20:1008–1015. https://doi.org/10.1128/CVI.00674-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao JF, Ching LC, Kou YR et al (2013) Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF- α -Induced inflammation in macrophages: role of liver X receptor α. Mediators Inflamm. https://doi.org/10.1155/2013/925171

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhong B, Rubinstein J, Ma S, Wang DH (2018) Genetic ablation of TRPV1 exacerbates pressure overload-induced cardiac hypertrophy. Biomed Pharmacother 99:261–270. https://doi.org/10.1016/j.biopha.2018.01.065

    Article  CAS  PubMed  Google Scholar 

  96. Palomer X, Coll T, Davidson MM, et al (2010) The p65 subunit of NF- k B binds to PGC-1 a , linking inflammation and metabolic disturbances in cardiac cells. 449–458. https://doi.org/https://doi.org/10.1093/cvr/cvq080

  97. Pollock N, Taylor G, Jobe F, Guzman E (2019) Modulation of the transcription factor NF- k B in antigen- presenting cells by bovine respiratory syncytial virus small hydrophobic protein. 1587–1599. https://doi.org/https://doi.org/10.1099/jgv.0.000855

  98. Gutierrez H, Davies AM (2011) Regulation of neural process growth, elaboration and structural plasticity by NF- k B. Trends Neurosci 34:316–325. https://doi.org/10.1016/j.tins.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu T, Zhang L, Joo D, Sun S (2017) NF- κ B signaling in in fl ammation. https://doi.org/10.1038/sigtrans.2017.23

  100. Doñate-Macián P, Jungfleisch J, Pérez-Vilaró G et al (2018) The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-04776-7

    Article  CAS  Google Scholar 

  101. Rinkenberger N, Schoggins JW (2018) Mucolipin-2 cation channel increases trafficking efficiency of endocytosed viruses. mBio 9:1–16. https://doi.org/https://doi.org/10.1128/mBio.02314-17

  102. Zhou Y, Frey TK, Yang JJ (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46:1–17. https://doi.org/10.1016/j.ceca.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Apaire-marchais V, Ogliastro M, Chandre F, et al (2016) Minireview Virus and calcium : an unexpected tandem to optimize insecticide efficacy. 8:168–178. https://doi.org/10.1111/1758-2229.12377

  104. Chen X, Cao R, Zhong W (2020) Host calcium channels and pumps in viral infections. Cells 9(1):94

    Article  CAS  Google Scholar 

  105. Ueda M, Daidoji T, Anariwa D, Yang C-S, Ibrahim MS, Ikuta K, Nakaya T (2010) Highly pathogenic H5N1 avian influenza virus induces extracellular Ca2+ influx, leading to apoptosis in avian cells. J Virol 84(6):3068–3078

    Article  CAS  Google Scholar 

  106. Taverner WK, Jacobus EJ, Christianson J, Champion B, Paton AW, Paton JC, Weiheng S, Cawood R, Seymour LW, Lei-Rossmann J (2019) Calcium influx caused by ER stress inducers enhances oncolytic adenovirus enadenotucirev replication and killing through PKCα activation. Mol Ther Oncolytics 15:117–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Manmohan Parida, DRDE, Gwalior, India, for kindly providing the virus strain (DRDE-06), Vero cell line, and E2 antibody. We are also thankful to the flow cytometry facility and the confocal facility of NISER and ILS for their support.

Funding

This study was partly funded by CSIR, India grant no. 37 (1542)/12/EMR-II, 37(1675)/16/EMR-II, DST FIST grant no. SR/FST/LSI-652/2015 and DST-SERB, India grant no. EMR/2016/000854. It was supported by Institute of Life Sciences, Bhubaneswar, under the Department of Biotechnology and National Institute of Science Education and Research, HBNI, Bhubaneswar, under the Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P Sanjai Kumar, Soma Chattopadhyay, Subhasis Chattopadhyay; Methodology: P Sanjai Kumar, Tapas K. Nayak, Chandan Mahish, Subhransu S. Sahoo, Anukrishna R, Saikat De, Ankita Datey, Ram P. Sahu, Chandan Goswami, Soma Chattopadhyay, Subhasis Chattopadhyay; Formal analysis and investigation: P Sanjai Kumar, Soma Chattopadhyay, Subhasis Chattopadhyay; Writing - original draft preparation: P Sanjai Kumar, Soma Chattopadhyay, Subhasis Chattopadhyay; Writing - review and editing: P Sanjai Kumar, Tapas K. Nayak, Chandan Mahish, Subhransu S. Sahoo, Anukrishna R, Saikat De, Ankita Datey, Ram P. Sahu, Chandan Goswami, Soma Chattopadhyay, Subhasis Chattopadhyay; Funding acquisition: Soma Chattopadhyay, Subhasis Chattopadhyay; Resources: Soma Chattopadhyay, Subhasis Chattopadhyay; Supervision: Soma Chattopadhyay, Subhasis Chattopadhyay

Corresponding authors

Correspondence to Soma Chattopadhyay or Subhasis Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Handling Editor: Patricia Aguilar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjai Kumar, P., Nayak, T.K., Mahish, C. et al. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol 166, 139–155 (2021). https://doi.org/10.1007/s00705-020-04852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04852-8

Navigation