Skip to main content

Advertisement

Log in

Isolation and complete genome sequencing of the virulent phage vB_EcoS_XY3 infecting multidrug-resistant Escherichia coli

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A virulent phage, named vB_EcoS_XY3, was isolated from hospital wastewater in Xiangyang, China. Its morphological characteristics, growth parameters, adsorption rate, and pH and temperature stability were determined. Phage vB_EcoS_XY3 was found to be able to infect Escherichia coli laboratory strains and also some multidrug-resistant E. coli strains. Its complete genome consists of 51,345 base pairs of double-stranded DNA with an average GC content of 55.24% and 85 putative protein-coding genes. Forty-four genes were annotated with known functions. These results will not only provide further insights into E. coli phages but also have implications for the development of potential biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S (2017) Environmental Escherichia coli: ecology and public health implications—a review. J Appl Microbiol 123(3):570–581. https://doi.org/10.1111/jam.13468

    Article  CAS  PubMed  Google Scholar 

  2. Ron EZ (2010) Distribution and evolution of virulence factors in septicemic Escherichia coli. Int J Med Microbiol 300(6):367–370. https://doi.org/10.1016/j.ijmm.2010.04.009

    Article  PubMed  Google Scholar 

  3. Wiles TJ, Kulesus RR, Mulvey MA (2008) Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 85(1):11–19. https://doi.org/10.1016/j.yexmp.2008.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5(5):449–456. https://doi.org/10.1016/S1286-4579(03)00049-2

    Article  PubMed  Google Scholar 

  5. van Hout D, Verschuuren TD, Bruijning-Verhagen PCJ, Bosch T, Schürch AC, Willems RJL, Bonten MJM, Kluytmans JAJW (2020) Extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing Escherichia coli isolates causing bacteremia in the Netherlands (2014–2016) differ in clonal distribution, antimicrobial resistance gene and virulence gene content. PLoS One 15(1):e0227604–e0227604. https://doi.org/10.1371/journal.pone.0227604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bloom DE, Black S, Salisbury D, Rappuoli R (2018) Antimicrobial resistance and the role of vaccines. Proc Natl Acad Sci USA 115(51):12868–12871. https://doi.org/10.1073/pnas.1717157115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moelling K, Broecker F, Willy C (2018) A wake-up call: we need phage therapy now. Viruses. https://doi.org/10.3390/v10120688

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, Sun C, Feng X (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One 7(3):e31698. https://doi.org/10.1371/journal.pone.0031698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Govind R, Fralick JA, Rolfe RD (2006) Genomic organization and molecular characterization of Clostridium difficile bacteriophage PhiCD119. J Bacteriol 188(7):2568–2577. https://doi.org/10.1128/JB.188.7.2568-2577.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kropinski AM (2018) Practical advice on the one-step growth curve. Methods Mol Biol 1681:41–47. https://doi.org/10.1007/978-1-4939-7343-9_3

    Article  CAS  PubMed  Google Scholar 

  11. Yuan Y, Gao M, Wu D, Liu P, Wu Y (2012) Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS One 7(5):e37557. https://doi.org/10.1371/journal.pone.0037557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  17. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics (Oxf, Engl) 21(4):537–539. https://doi.org/10.1093/bioinformatics/bti054

    Article  CAS  Google Scholar 

  19. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics (Oxf, Engl) 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  Google Scholar 

  20. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500. https://doi.org/10.1093/nar/gkg500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79(24):7547–7555. https://doi.org/10.1128/aem.02229-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses. https://doi.org/10.3390/v9040070

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abel Carrias TJW, Waldbieser Geoffrey C, Mead David A, Terhune Jeffery S, Liles Mark R (2011) Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J 8(1):6. https://doi.org/10.1186/1743-422X-8-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510. https://doi.org/10.1128/jcm.03617-13

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nilsson AS (2014) Phage therapy—constraints and possibilities. Upsala J Med Sci 119(2):192–198. https://doi.org/10.3109/03009734.2014.902878

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Natural Science Foundation of Hubei Province of China (2020DFE025, 2019AHB068, 2018CFB701), the Scientific Research Project of Hubei Province Health Committee (ZY2019F028), the Innovative Team Project (2017YHKT02) from the Institute of Medicine and Nursing at Hubei University of Medicine and the Science and Technology Development Project of Xiangyang.

Author information

Authors and Affiliations

Authors

Contributions

PF, QZ and MS conceived and designed the experiments. PF, QZ, LS, QX, HX and SC performed the experiments. PF, QZ, HX, SC and QX analyzed the data. PF wrote the paper. PF, QZ, HX, SC, QX, XS and MS revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Stability of phage vB_EcoS_XY3. (A) Thermal tolerance of the phage. (B) Tolerance of the phage to treatment at different pH values. Three independent experiments were performed, and the values represented by means. (EPS 4190 kb)

Fig. S2

Kinetics of vB_EcoS_XY3 adsorption onto host cells (A) and one-step growth curve of phage vB_EcoS_XY3 (B). Data are shown as the average of triplicate experiments, and error bars indicate the standard deviation (SD). (EPS 6453 kb)

Fig. S3

Genome structure of phage vB_EcoS_XY3. The middle ring indicates the GC content (black), and the innermost ring represents the GC skew of the vB_EcoS_XY3 genome. The predicted functions of the CDSs are indicated. (EPS 10569 kb)

Supplementary material 4 (DOC 17 kb)

Supplementary material 5 (DOC 62 kb)

Supplementary material 6 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, P., Zhao, Q., Shi, L. et al. Isolation and complete genome sequencing of the virulent phage vB_EcoS_XY3 infecting multidrug-resistant Escherichia coli. Arch Virol 166, 303–307 (2021). https://doi.org/10.1007/s00705-020-04844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04844-8

Navigation