Skip to main content

Advertisement

Log in

A recombinase polymerase amplification-based lateral flow strip assay for rapid detection of genogroup II noroviruses in the field

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human norovirus is the leading cause of viral gastroenteritis worldwide. Rapid detection facilitates management of disease outbreaks, but field diagnosis is difficult to achieve due to the lack of reliable and portable methods. Recombinase polymerase amplification (RPA) is a robust isothermal amplification method that is capable of rapidly amplifying and detecting nucleic acids using simple equipment. In this study, RPA combined with lateral flow (LF) strips specific for human genogroup II (GII) noroviruses was established and evaluated. The assay specifically detects purified GII noroviruses as well as RNA in boiled human stool samples, with a sensitivity of 50 norovirus genome copies per reaction. The whole detection procedure of the one-step RT-RPA-LF is completed within 20 min, which is eight times faster than that of the standard real-time RT-PCR. The RT-RPA-LF method described here is suitable for rapid field diagnosis of all GII noroviruses in human stool samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28:134–164

    Article  CAS  Google Scholar 

  2. de Graaf M, van Beek J, Koopmans MP (2016) Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol 14:421–433

    Article  CAS  Google Scholar 

  3. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, Wang Q, White PA, Katayama K, Vennema H, Koopmans MPG, Vinje J (2019) Updated classification of norovirus genogroups and genotypes. J Gen Virol 100:1393–1406

    Article  CAS  Google Scholar 

  4. Tao Z, Xu M, Lin X, Wang H, Song L, Wang S, Zhou N, Zhang D, Xu A (2015) Environmental surveillance of genogroup I and II noroviruses in Shandong Province, China in 2013. Sci Rep 5:17444

    Article  CAS  Google Scholar 

  5. Lee BY, Wettstein ZS, McGlone SM, Bailey RR, Umscheid CA, Smith KJ, Muder RR (2011) Economic value of norovirus outbreak control measures in healthcare settings. Clin Microbiol Infect 17:640–646

    Article  CAS  Google Scholar 

  6. Lee BY, McGlone SM, Bailey RR, Wettstein ZS, Umscheid CA, Muder RR (2011) Economic impact of outbreaks of norovirus infection in hospitals. Infect Control Hosp Epidemiol 32:191–193

    Article  Google Scholar 

  7. Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250

    Article  CAS  Google Scholar 

  8. Vinje J (2015) Advances in laboratory methods for detection and typing of norovirus. J Clin Microbiol 53:373–381

    Article  CAS  Google Scholar 

  9. Fukuda S, Takao S, Kuwayama M, Shimazu Y, Miyazaki K (2006) Rapid detection of norovirus from fecal specimens by real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol 44:1376–1381

    Article  CAS  Google Scholar 

  10. Moore MD, Jaykus LA (2017) Development of a recombinase polymerase amplification assay for detection of epidemic human noroviruses. Sci Rep 7:40244

    Article  CAS  Google Scholar 

  11. Ma L, Zeng F, Cong F, Huang B, Zhu Y, Wu M, Xu F, Yuan W, Huang R, Guo P (2018) Development and evaluation of a broadly reactive reverse transcription recombinase polymerase amplification assay for rapid detection of murine norovirus. BMC Vet Res 14:399

    Article  CAS  Google Scholar 

  12. Guo P, Yu Y, Pan Y, Yan S, Wang Y (2018) Design and evaluation of nested PCR primers for specific detection of genogroup I noroviruses in oysters. Mol Cell Probes 40:40–43

    Article  CAS  Google Scholar 

  13. Trujillo AA, McCaustland KA, Zheng D-P, Hadley LA, Vaughn G, Adams SM, Ando T, Glass RI, Monroe SS (2006) Use of TaqMan real-time reverse transcription-PCR for rapid detection, quantification, and typing of norovirus. J Clin Microbiol 44:1405–1412

    Article  CAS  Google Scholar 

  14. Persson S, Eriksson R, Lowther J, Ellstrom P, Simonsson M (2018) Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. Int J Food Microbiol 284:73–83

    Article  CAS  Google Scholar 

  15. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Article  CAS  Google Scholar 

  16. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13:99

    Article  CAS  Google Scholar 

  17. Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmann M (2012) Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol 50:2234–2238

    Article  CAS  Google Scholar 

  18. Euler M, Wang Y, Nentwich O, Piepenburg O, Hufert FT, Weidmann M (2012) Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J Clin Virol 54:308–312

    Article  CAS  Google Scholar 

  19. Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmann M (2013) Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol 51:1110–1117

    Article  CAS  Google Scholar 

  20. Sakai K, Trabasso P, Moretti ML, Mikami Y, Kamei K, Gonoi T (2014) Identification of fungal pathogens by visible microarray system in combination with isothermal gene amplification. Mycopathologia 178:11–26

    Article  CAS  Google Scholar 

  21. Xia X, Yu Y, Weidmann M, Pan Y, Yan S, Wang Y (2014) Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay. PLoS One 9:e104667

    Article  Google Scholar 

  22. Luo GC, Yi TT, Jiang B, Guo XL, Zhang GY (2019) Betaine-assisted recombinase polymerase assay with enhanced specificity. Anal Biochem 575:36–39

    Article  CAS  Google Scholar 

  23. Kroneman A, Vennema H, Deforche K, v d Avoort H, Penaranda S, Oberste MS, Vinje J, Koopmans M (2011) An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol 51:121–125

    Article  CAS  Google Scholar 

  24. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis 14:725–730

    Article  Google Scholar 

  25. Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14:1224–1231

    Article  Google Scholar 

  26. Scharff RL (2012) Economic burden from health losses due to foodborne illness in the United States. J Food Prot 75:123–131

    Article  Google Scholar 

  27. Debbink K, Lindesmith LC, Donaldson EF, Swanstrom J, Baric RS (2014) Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses. J Virol 88:7256–7266

    Article  CAS  Google Scholar 

  28. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Takeda N, Katayama K (2003) Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol 41:1548–1557

    Article  CAS  Google Scholar 

  29. Adams MJ, King AM, Carstens EB (2013) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). Arch Virol 158:2023–2030

    Article  CAS  Google Scholar 

  30. Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS (2006) Norovirus classification and proposed strain nomenclature. Virology 346:312–323

    Article  CAS  Google Scholar 

  31. Ando T, Noel JS, Fankhauser RL (2000) Genetic classification of “Norwalk-like viruses. J Infect Dis 181(Suppl 2):S336–S348

    Article  CAS  Google Scholar 

  32. Vinje J, Hamidjaja RA, Sobsey MD (2004) Development and application of a capsid VP1 (region D) based reverse transcription PCR assay for genotyping of genogroup I and II noroviruses. J Virol Methods 116:109–117

    Article  CAS  Google Scholar 

  33. Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, Green K, Martella V, Katayama K, Koopmans M (2013) Proposal for a unified norovirus nomenclature and genotyping. Arch Virol 158:2059–2068

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (2017YFC1600703) and the National Natural Science Foundation of China (31601570, 41876195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxin Yu or Yongjie Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Reimar Johne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Yu, Y. & Wang, Y. A recombinase polymerase amplification-based lateral flow strip assay for rapid detection of genogroup II noroviruses in the field. Arch Virol 165, 2767–2776 (2020). https://doi.org/10.1007/s00705-020-04798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04798-x

Navigation