Canine distemper virus induces downregulation of GABAA,GABAB, and GAT1 expression in brain tissue of dogs

Abstract

The aim of the study was to determine the expression profiles of GABAA, GABAB, and GAT1 using RT-PCR and the immunoreactivity of GAT1 via immunohistochemical and immunofluorescence assays in CDV-infected brain tissue of dogs. For this purpose, dogs with CDV and dogs without CDV were selected. The mRNA transcript levels of GABAA, GABAB, and GAT1 were significantly downregulated in brain tissue in the CDV-infected group as compared with that in non-CDV-infected brain tissue in the control group (p < 0.01, p < 0.001). In addition, the immunoreactivity of GAT1 in CDV-infected brain tissue was significantly lower than in the uninfected group (p < 0.05). We conclude that one of the main causes of myoclonus in CDV infections may be the blockage of postsynaptic inhibition in neurons or a lack of metabolism of GABA. In addition, a GABA neurotransmission imbalance could play a role in demyelination in CDV infections.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Therap 110(3):533–543. https://doi.org/10.1016/j.pharmthera.2006.03.006

    CAS  Article  Google Scholar 

  2. 2.

    Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6(1):37–43. https://doi.org/10.1016/j.coph.2005.10.002

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Couve A, Moss SJ, Pangalos MN (2000) GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci 16(4):296–312. https://doi.org/10.1006/mcne.2000.0908

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ulrich D, Bettler B (2007) GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17(3):298–303. https://doi.org/10.1016/j.conb.2007.04.001

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Mehta AK, Ticku MK (1999) An update on GABAA receptors. Brain Res Brain Res Rev 29(2–3):196–217

    CAS  Article  Google Scholar 

  6. 6.

    Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60(3):243–260. https://doi.org/10.1124/pr.108.00505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lopez-Bendito G, Shigemoto R, Kulik A, Vida I, Fairen A, Lujan R (2004) Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14(7):836–848. https://doi.org/10.1002/hipo.10221

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Prosser HM, Gill CH, Hirst WD, Grau E, Robbins M, Calver A, Soffin EM, Farmer CE, Lanneau C, Gray J, Schenck E, Warmerdam BS, Clapham C, Reavill C, Rogers DC, Stean T, Upton N, Humphreys K, Randall A, Geppert M, Davies CH, Pangalos MN (2001) Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol Cell Neurosci 17(6):1059–1070. https://doi.org/10.1006/mcne.2001.0995

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Kaslin E, Korn R, Bischoff S, Kaupmann K, van der Putten H, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31(1):47–58. https://doi.org/10.1016/s0896-6273(01)00345-2

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D, Ristig D, Schuler V, Meigel I, Lampert C, Stein T, Prezeau L, Blahos J, Pin J, Froestl W, Kuhn R, Heid J, Kaupmann K, Bettler B (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21(4):1189–1202

    CAS  Article  Google Scholar 

  11. 11.

    Marshall FH, Jones KA, Kaupmann K, Bettler B (1999) GABAB receptors—the first 7TM heterodimers. Trends Pharmacol Sci 20(10):396–399

    CAS  Article  Google Scholar 

  12. 12.

    Manyam NB, Katz L, Hare TA, Gerber JC, Grossman MH (1980) Levels of γ-aminobutyric acid in cerebrospinal fluid in various neurologic disorders. Arch Neurol 37(6):352–355

    CAS  Article  Google Scholar 

  13. 13.

    Sanders VJ, Felisan S, Waddell A, Tourtellotte WW (1996) Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J Neurovirol 2(4):249–258

    CAS  Article  Google Scholar 

  14. 14.

    Gade-Andavolu R, MacMurray JP, Blake H, Muhleman D, Tourtellotte W, Comings DE (1998) Association between the gamma-aminobutyric acid A3 receptor gene and multiple sclerosis. Arch Neurol 55(4):513–516. https://doi.org/10.1001/archneur.55.4.513

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kang JQ (2017) Defects at the crossroads of GABAergic signaling in generalized genetic epilepsies. Epilepsy Res 137:9–18. https://doi.org/10.1016/j.eplepsyres.2017.08.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lie MEK, Al-Khawaja A, Damgaard M, Haugaard AS, Schousboe A, Clarkson AN, Wellendorph P (2017) Glial GABA transporters as modulators of ınhibitory signalling in epilepsy and stroke. Adv Neurobiol 16:137–167. https://doi.org/10.1007/978-3-319-55769-4_7

    Article  PubMed  Google Scholar 

  17. 17.

    Wu Z, Guo Z, Gearing M, Chen G (2014) Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat Commun 5:4159. https://doi.org/10.1038/ncomms5159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Carvill GL, McMahon JM, Schneider A, Zemel M, Myers CT, Saykally J, Nguyen J, Robbiano A, Zara F, Specchio N, Mecarelli O, Smith RL, Leventer RJ, Moller RS, Nikanorova M, Dimova P, Jordanova A, Petrou S, Helbig I, Striano P, Weckhuysen S, Berkovic SF, Scheffer IE, Mefford HC (2015) Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic–atonic seizures. Am J Hum Genet 96(5):808–815. https://doi.org/10.1016/j.ajhg.2015.02.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Johannesen KM, Gardella E, Linnankivi T, Courage C, de Saint Martin A, Lehesjoki AE, Mignot C, Afenjar A, Lesca G, Abi-Warde MT, Chelly J, Piton A, Merritt JL 2nd, Rodan LH, Tan WH, Bird LM, Nespeca M, Gleeson JG, Yoo Y, Choi M, Chae JH, Czapansky-Beilman D, Reichert SC, Pendziwiat M, Verhoeven JS, Schelhaas HJ, Devinsky O, Christensen J, Specchio N, Trivisano M, Weber YG, Nava C, Keren B, Doummar D, Schaefer E, Hopkins S, Dubbs H, Shaw JE, Pisani L, Myers CT, Tang S, Tang S, Pal DK, Millichap JJ, Carvill GL, Helbig KL, Mecarelli O, Striano P, Helbig I, Rubboli G, Mefford HC, Moller RS (2018) Defining the phenotypic spectrum of SLC6A1 mutations. Epilepsia 59(2):389–402. https://doi.org/10.1111/epi.13986

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Pillet S, von Messling V (2009) Canine distemper virus selectively inhibits apoptosis progression in infected immune cells. J Virol 83(12):6279–6287. https://doi.org/10.1128/jvi.00050-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Pratakpiriya W, Seki F, Otsuki N, Sakai K, Fukuhara H, Katamoto H, Hirai T, Maenaka K, Techangamsuwan S, Lan NT, Takeda M, Yamaguchi R (2012) Nectin4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence. J Virol 86(18):10207–10210. https://doi.org/10.1128/jvi.00824-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Guvenc T, Yarim M, Gulbahar M, Kabak Y (2008) Immunohistochemical distribution of alpha B-crystallin in the cerebellum of dogs infected with canine distemper virus. Acta Vet Hung 56(1):117–123

    Article  Google Scholar 

  23. 23.

    Yarim M, Gulbahar MY, Guvenc T, Karahan S, Harada N, Kabak YB, Karayigit MO (2010) Aromatase expression in the cerebellum of the dog infected with canine distemper virus. Berl Munch Tierarztl Wochenschr 123(7–8):301–306

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhao N, Li M, Luo J, Wang S, Liu S, Wang S, Lyu W, Chen L, Su W, Ding H, He H (2017) Impacts of canine distemper virus infection on the giant panda population from the perspective of gut microbiota. Sci Rep 7:39954. https://doi.org/10.1038/srep39954

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Feng N, Yu Y, Wang T, Wilker P, Wang J, Li Y, Sun Z, Gao Y, Xia X (2016) Fatal canine distemper virus infection of giant pandas in China. Sci Rep 6:27518. https://doi.org/10.1038/srep27518

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Beineke A, Puff C, Seehusen F, Baumgartner W (2009) Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol 127(1–2):1–18. https://doi.org/10.1016/j.vetimm.2008.09.023

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Qiu W, Zheng Y, Zhang S, Fan Q, Liu H, Zhang F, Wang W, Liao G, Hu R (2011) Canine distemper outbreak in rhesus monkeys, China. Emerg İnfect Dis 17(8):1541–1543. https://doi.org/10.3201/eid1708.101153

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S, Carpenter M, O’Brien SJ, Pospischil A, Hofmann-Lehmann R, Lutz H, Mwamengele GL, Mgasa MN, Machange GA, Summers BA, Appel MJ (1996) A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379(6564):441–445. https://doi.org/10.1038/379441a0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ek-Kommonen C, Sihvonen L, Pekkanen K, Rikula U, Nuotio L (1997) Outbreak off canine distemper in vaccinated dogs in Finland. Vet Rec 141(15):380–383. https://doi.org/10.1136/vr.141.15.380

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Williams ES, Thorne ET, Appel MJ, Belitsky DW (1988) Canine distemper in black-footed ferrets (Mustela nigripes) from Wyoming. J Wildl Dis 24(3):385–398. https://doi.org/10.7589/0090-3558-24.3.385

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Blixenkrone-Moller M (1989) Detection of intracellular canine distemper virus antigen in mink inoculated with an attenuated or a virulent strain of canine distemper virus. Am J Vet Res 50(9):1616–1620

    CAS  PubMed  Google Scholar 

  32. 32.

    Barrett T (1999) Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Vet Microbiol 69(1–2):3–13. https://doi.org/10.1016/s0378-1135(99)00080-2

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Baumgärtner W, Alldinger S (2005) The pathogenesis of canine distemper virus induced demyelination a biphasic process. In: Lavi LE, Constantinescu CS (eds) Experimental models of multiple sclerosis. Springer, New York, pp 871–888

    Google Scholar 

  34. 34.

    Tian J, Dang H, Wallner M, Olsen R, Kaufman DL (2018) Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Sci Rep 8(1):16555. https://doi.org/10.1038/s41598-018-32733-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Van Schependom J, Vidaurre D, Costers L, Sjogard M, D’Hooghe MB, D’Haeseleer M, Wens V, De Tiege X, Goldman S, Woolrich M, Nagels G (2019) Altered transient brain dynamics in multiple sclerosis: treatment or pathology? Hum Brain Mapp. https://doi.org/10.1002/hbm.24737

    Article  PubMed  Google Scholar 

  36. 36.

    Kular L, Needhamsen M, Adzemovic MZ, Kramarova T, Gomez-Cabrero D, Ewing E, Piket E, Tegner J, Beck S, Piehl F, Brundin L, Jagodic M (2019) Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clin Epigenet 11(1):86. https://doi.org/10.1186/s13148-019-0678-1

    CAS  Article  Google Scholar 

  37. 37.

    Kiljan S, Prins M, Baselmans BM, Bol J, Schenk GJ, van Dam AM (2019) Enhanced GABAergic ımmunoreactivity in hippocampal neurons and astroglia of multiple sclerosis patients. J Neuropathol Exp Neurol 78(6):480–491. https://doi.org/10.1093/jnen/nlz028

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Habermacher C, Angulo MC, Benamer N (2019) Glutamate versus GABA in neuron-oligodendroglia communication. Glia. https://doi.org/10.1002/glia.23618

    Article  PubMed  Google Scholar 

  39. 39.

    Hundehege P, Fernandez-Orth J, Romer P, Ruck T, Muntefering T, Eichler S, Cerina M, Epping L, Albrecht S, Menke AF, Birkner K, Gobel K, Budde T, Zipp F, Wiendl H, Gorji A, Bittner S, Meuth SG (2018) Targeting voltage-dependent calcium channels with pregabalin exerts a direct neuroprotective effect in an animal model of multiple sclerosis. Neuro-Signals 26(1):77–93. https://doi.org/10.1159/000495425

    Article  PubMed  Google Scholar 

  40. 40.

    Comakli S, Ozdemir S (2019) Comparative evaluation of the ımmune responses in cattle mammary tissues naturally ınfected with bovine parainfluenza virus Type 3 and bovine alphaherpesvirus-1. Pathogens (Basel, Switzerland) 8:1. https://doi.org/10.3390/pathogens8010026

    CAS  Article  Google Scholar 

  41. 41.

    Ozdemir S, Comakli S (2018) Investigation of the interaction between bta-miR-222 and the estrogen receptor alpha gene in the bovine ovarium. Reprod Biol 18(3):259–266. https://doi.org/10.1016/j.repbio.2018.06.006

    Article  PubMed  Google Scholar 

  42. 42.

    Liu DF, Jiang YT, Yang TK, Lin H, Liu CG, Chai HL, Wang C, Cui Y, Jiang XF, Ma XQ, Liu DC, Hua YP, Qu LD, Zhang HY (2011) Establishment of the duplex PCR for the detection of canine distemper virus and canine parvovirus. Chin Pre Vet Med 34:211–213

    Google Scholar 

  43. 43.

    Liu D, Liu F, Guo D, Hu X, Li Z, Li Z, Ma J, Liu C (2019) One-step triplex PCR/RT-PCR to detect canine distemper virus, canine parvovirus and canine kobuvirus. J Vet Med Sci 81(7):1040–1042. https://doi.org/10.1292/jvms.17-0442

    Article  PubMed  Google Scholar 

  44. 44.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  45. 45.

    Çomaklı S, Sağlam YS, Timurkan MÖ (2019) Comparative detection of bovine herpesvirus-1 using antigen ELISA, immunohistochemistry and immunofluorescence methods in cattle with pneumonia. Turk J Vet Anim Sci 43(3):306–313

    Article  Google Scholar 

  46. 46.

    Klemens J, Ciurkiewicz M, Chludzinski E, Iseringhausen M, Klotz D, Pfankuche VM, Ulrich R, Herder V, Puff C, Baumgartner W, Beineke A (2019) Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Sci Rep 9(1):11689. https://doi.org/10.1038/s41598-019-48146-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Seehusen F, Baumgartner W (2010) Axonal pathology and loss precede demyelination and accompany chronic lesions in a spontaneously occurring animal model of multiple sclerosis. Brain Pathol (Zurich, Switzerland) 20(3):551–559. https://doi.org/10.1111/j.1750-3639.2009.00332.x

    CAS  Article  Google Scholar 

  48. 48.

    Spitzbarth I, Baumgartner W, Beineke A (2012) The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 147(1–2):6–24. https://doi.org/10.1016/j.vetimm.2012.04.005

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgartner W, Wewetzer K (2012) Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 60(3):358–371. https://doi.org/10.1002/glia.22270

    Article  PubMed  Google Scholar 

  50. 50.

    Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58(6):730–740. https://doi.org/10.1002/glia.20958

    Article  PubMed  Google Scholar 

  51. 51.

    Li C, Xiao L, Liu X, Yang W, Shen W, Hu C, Yang G, He C (2013) A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61(5):732–749. https://doi.org/10.1002/glia.22469

    Article  PubMed  Google Scholar 

  52. 52.

    Fannon J, Tarmier W, Fulton D (2015) Neuronal activity and AMPA-type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells. Glia 63(6):1021–1035. https://doi.org/10.1002/glia.22799

    Article  PubMed  Google Scholar 

  53. 53.

    Hamilton NB, Clarke LE, Arancibia-Carcamo IL, Kougioumtzidou E, Matthey M, Karadottir R, Whiteley L, Bergersen LH, Richardson WD, Attwell D (2017) Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length. Glia 65(2):309–321. https://doi.org/10.1002/glia.23093

    Article  PubMed  Google Scholar 

  54. 54.

    Miguel-Hidalgo JJ (2018) Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front Mol Neurosci 11:78. https://doi.org/10.3389/fnmol.2018.00078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ, Mehler MF (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci USA 99(25):16273–16278. https://doi.org/10.1073/pnas.232586699

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Watanabe M, Fukuda A (2015) Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci 9:371. https://doi.org/10.3389/fncel.2015.00371

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discovery 10(9):685–697. https://doi.org/10.1038/nrd3502

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15(10):637–654. https://doi.org/10.1038/nrn3819

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Luchetti S, Huitinga I, Swaab DF (2011) Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Neuroscience 191:6–21. https://doi.org/10.1016/j.neuroscience.2011.04.010

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Lim JY, Utzschneider DA, Sakatani K, Kocsis JD (1993) The attenuation of GABA sensitivity in the maturing myelin-deficient rat optic nerve. Brain Res Dev Brain Res 72(1):15–20. https://doi.org/10.1016/0165-3806(93)90155-4

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, Jennings K, Gelman B (2016) Neuropsychological, neurovirological and neuroimmune aspects of abnormal GABAergic transmission in HIV ınfection. J Neuroimmune Pharmacol 11(2):279–293. https://doi.org/10.1007/s11481-016-9652-2

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Sanders RD, Grover V, Goulding J, Godlee A, Gurney S, Snelgrove R, Ma D, Singh S, Maze M, Hussell T (2015) Immune cell expression of GABAA receptors and the effects of diazepam on influenza infection. J Neuroimmunol 282:97–103. https://doi.org/10.1016/j.jneuroim.2015.04.001

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Sidorkiewicz M, Brocka M, Bronis M, Grek M, Jozwiak B, Piekarska A, Bartkowiak J (2012) The altered expression of alpha1 and beta3 subunits of the gamma-aminobutyric acid A receptor is related to the hepatitis C virus infection. Eur J Clin Microbiol İnfect Dis 31(7):1537–1542. https://doi.org/10.1007/s10096-011-1475-8

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Magnaghi V, Ballabio M, Camozzi F, Colleoni M, Consoli A, Gassmann M, Lauria G, Motta M, Procacci P, Trovato AE, Bettler B (2008) Altered peripheral myelination in mice lacking GABAB receptors. Mol Cell Neurosci 37(3):599–609. https://doi.org/10.1016/j.mcn.2007.12.009

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Faroni A, Melfi S, Castelnovo LF, Bonalume V, Colleoni D, Magni P, Arauzo-Bravo MJ, Reinbold R, Magnaghi V (2019) GABA-B1 receptor-null Schwann cells exhibit compromised ın vitro myelination. Mol Neurobiol 56(2):1461–1474. https://doi.org/10.1007/s12035-018-1158-x

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Faroni A, Castelnovo LF, Procacci P, Caffino L, Fumagalli F, Melfi S, Gambarotta G, Bettler B, Wrabetz L, Magnaghi V (2014) Deletion of GABA-B receptor in Schwann cells regulates remak bundles and small nociceptive C-fibers. Glia 62(4):548–565. https://doi.org/10.1002/glia.22625

    Article  PubMed  Google Scholar 

  67. 67.

    Magnaghi V (2007) GABA and neuroactive steroid interactions in glia: new roles for old players? Curr Neuropharmacol 5(1):47–64

    CAS  Article  Google Scholar 

  68. 68.

    Magnaghi V, Ballabio M, Cavarretta IT, Froestl W, Lambert JJ, Zucchi I, Melcangi RC (2004) GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur J Neurosci 19(10):2641–2649. https://doi.org/10.1111/j.0953-816X.2004.03368.x

    Article  PubMed  Google Scholar 

  69. 69.

    Jones TL, Sweitzer SM, Peters MC, Wilson SP, Yeomans DC (2005) GABAB receptors on central terminals of C-afferents mediate intersegmental Adelta-afferent evoked hypoalgesia. Eur J Pain (London, England) 9(3):233–242. https://doi.org/10.1016/j.ejpain.2004.06.004

    CAS  Article  Google Scholar 

  70. 70.

    Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 213(2):89–100. https://doi.org/10.1007/s00232-006-0877-5

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. The Biol Chem 268(3):2106–2112

    CAS  Google Scholar 

  72. 72.

    Chiu CS, Jensen K, Sokolova I, Wang D, Li M, Deshpande P, Davidson N, Mody I, Quick MW, Quake SR, Lester HA (2002) Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci 22(23):10251–10266

    CAS  Article  Google Scholar 

  73. 73.

    Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science (New York, NY) 249(4974):1303–1306. https://doi.org/10.1126/science.1975955

    CAS  Article  Google Scholar 

  74. 74.

    Keros S, Hablitz JJ (2005) Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 94(3):2073–2085. https://doi.org/10.1152/jn.00520.2005

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ataturk University Eastern Anatolia Advanced Technology Application and Research Center (DAYTAM), Prof. Dr. Tolga Güvenç, and Dr. Mustafa Özkaraca for their support. We did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

SÇ designed and organized the study. SÇ, SÖ and ŞD contributed to the planning, designing and analyses of the experiments, data collection and quality control. SÇ and SÖ performed the statistical analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Selim Çomakli.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Ana Cristina Bratanich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çomakli, S., Özdemir, S. & Değirmençay, Ş. Canine distemper virus induces downregulation of GABAA,GABAB, and GAT1 expression in brain tissue of dogs. Arch Virol 165, 1321–1331 (2020). https://doi.org/10.1007/s00705-020-04617-3

Download citation