Skip to main content

Advertisement

Log in

Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rotaviruses cause severe gastroenteritis in infants, in which the viruses interact with human histo-blood group antigens (HBGAs) as attachment and host susceptibility factors. While gastroenteritis outbreaks caused by rotaviruses are uncommon in adolescents, we reported here one that occurred in a middle school in China. Rectal swabs and saliva samples were collected from symptomatic and asymptomatic students, and samples were also collected from the environment. Using PCR, followed by DNA sequencing, a single G9P[8] rotavirus strain was identified as the causative agent. The attack rate of the outbreak was 13.5% for boarders, which was significantly higher than that of day students (1.8%). Person-to-person transmission was the most plausible transmission mode. The HBGA phenotypes of the individuals in the study were determined by enzyme immunoassay, using saliva samples, while recombinant VP8* protein of the causative rotavirus strain was produced for HBGA binding assays to evaluate the host susceptibility. Our data showed that secretor individuals had a significantly higher risk of infection than nonsecretors. Accordingly, the VP8* protein bound nearly all secretor saliva samples, but not those of nonsecretors, explaining the observed infection of secretor individuals only. This is the first single-outbreak-based investigation showing that P[8] rotavirus infected only secretors. Our investigation also suggests that health education of school students is an important countermeasure against an outbreak of communicable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GBD Mortality and Causes of Death Collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1

    Article  Google Scholar 

  2. Iijima Y, Iwamoto T, Nukuzuma S, Ohishi H, Hayashi K, Kobayashi N (2006) An outbreak of rotavirus infection among adults in an institution for rehabilitation: long-term residence in a closed community as a risk factor for rotavirus illness. Scand J Infect Dis 38(6–7):490–496. https://doi.org/10.1080/00365540500532134

    Article  PubMed  Google Scholar 

  3. Anderson EJ, Weber SG (2004) Rotavirus infection in adults. Lancet Infect Dis 4(2):91–99. https://doi.org/10.1016/S1473-3099(04)00928-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pacilli M, Cortese MM, Smith S, Siston A, Samala U, Bowen MD, Parada JP, Tam KI, Rungsrisuriyachai K, Roy S, Esona MD, Black SR (2015) Outbreak of gastroenteritis in adults due to rotavirus genotype G12P[8]. Clin Infect Dis 61(4):e20–e25. https://doi.org/10.1093/cid/civ294

    Article  PubMed  Google Scholar 

  5. Liu N, Xu Z, Li D, Zhang Q, Wang H, Duan ZJ (2014) Update on the disease burden and circulating strains of rotavirus in China: a systematic review and meta-analysis. Vaccine 32(35):4369–4375. https://doi.org/10.1016/j.vaccine.2014.06.018

    Article  PubMed  Google Scholar 

  6. Kirkwood CD, Steele AD (2018) Rotavirus vaccines in China: improvement still required. JAMA Netw Open 1(4):e181579. https://doi.org/10.1001/jamanetworkopen.2018.1579

    Article  PubMed  Google Scholar 

  7. Liu N, Yen C, Fang ZY, Tate JE, Jiang B, Parashar UD, Zeng G, Duan ZJ (2012) Projected health impact and cost-effectiveness of rotavirus vaccination among children <5 years of age in China. Vaccine 30(48):6940–6945. https://doi.org/10.1016/j.vaccine.2012.05.084

    Article  PubMed  Google Scholar 

  8. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes MK, Gentsch JR, Iturriza-Gomara M, Kirkwood CD, Martella V, Mertens PPC, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153(8):1621–1629. https://doi.org/10.1007/s00705-008-0155-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruvoen-Clouet N, Belliot G, Le Pendu J (2013) Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev Med Virol 23(6):355–366. https://doi.org/10.1002/rmv.1757

    Article  CAS  PubMed  Google Scholar 

  10. Tan M, Jiang X (2014) Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 16:e5. https://doi.org/10.1017/erm.2014.2

    Article  CAS  PubMed  Google Scholar 

  11. Jiang X, Liu Y, Tan M (2017) Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg Microbes Infect 6(4):e22. https://doi.org/10.1038/emi.2017.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Huang P, Tan M, Liu Y, Biesiada J, Meller J, Castello AA, Jiang B, Jiang X (2012) Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens. J Virol 86(18):9899–9910. https://doi.org/10.1128/JVI.00979-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86(9):4833–4843. https://doi.org/10.1128/JVI.05507-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gozalbo-Rovira R, Ciges-Tomas JR, Vila-Vicent S, Buesa J, Santiso-Bellon C, Monedero V, Yebra MJ, Marina A, Rodriguez-Diaz J (2019) Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathog 15(6):e1007865. https://doi.org/10.1371/journal.ppat.1007865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun XM, Dang L, Li DD, Qi JX, Wang MX, Chai WG, Zhang Q, Wang H, Bai RX, Tan M, Duan ZJ (2019) Structural basis of glycan recognition in globally predominant human P[8] rotavirus. Virol Sin. https://doi.org/10.1007/s12250-019-00164-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perez-Ortin R, Vila-Vicent S, Carmona-Vicente N, Santiso-Bellon C, Rodriguez-Diaz J, Buesa J (2019) Histo-blood group antigens in children with symptomatic rotavirus infection. Viruses-Basel. https://doi.org/10.3390/V11040339

    Article  Google Scholar 

  17. Payne DC, Currier RL, Staat MA, Sahni LC, Selvarangan R, Halasa NB, Englund JA, Weinberg GA, Boom JA, Szilagyi PG, Klein EJ, Chappell J, Harrison CJ, Davidson BS, Mijatovic-Rustempasic S, Moffatt MD, McNeal M, Wikswo M, Bowen MD, Morrow AL, Parashar UD (2015) Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. JAMA Pediatr 169(11):1040–1045. https://doi.org/10.1001/jamapediatrics.2015.2002

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang XF, Long Y, Tan M, Zhang T, Huang Q, Jiang X, Tan WF, Li JD, Hu GF, Tang SX, Dai YC (2016) P[8] and P[4] rotavirus infection associated with secretor phenotypes among children in South China. Sci Rep. https://doi.org/10.1038/Srep34591

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun X, Guo N, Li J, Yan X, He Z, Li D, Jin M, Xie G, Pang L, Zhang Q, Liu N, Duan ZJ (2016) Rotavirus infection and histo-blood group antigens in the children hospitalized with diarrhoea in China. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2016.06.007

    Article  PubMed  Google Scholar 

  20. Ayouni S, Sdiri-Loulizi K, de Rougemont A, Estienney M, Ambert-Balay K, Aho S, Hamami S, Aouni M, Neji-Guediche M, Pothier P, Belliot G (2015) Rotavirus P[8] infections in persons with secretor and nonsecretor phenotypes, Tunisia. Emerg Infect Dis 21(11):2055–2058. https://doi.org/10.3201/eid2111.141901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simmonds MK, Armah G, Asmah R, Banerjee I, Damanka S, Esona M, Gentsch JR, Gray JJ, Kirkwood C, Page N, Iturriza-Gomara M (2008) New oligonucleotide primers for P-typing of rotavirus strains: strategies for typing previously untypeable strains. J Clin Virol 42(4):368–373. https://doi.org/10.1016/j.jcv.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XF, Huang Q, Long Y, Jiang X, Zhang T, Tan M, Zhang QL, Huang ZY, Li YH, Ding YQ, Hu GF, Tang S, Dai YC (2015) An outbreak caused by GII.17 norovirus with a wide spectrum of HBGA-associated susceptibility. Sci Rep 5:17687. https://doi.org/10.1038/srep17687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin M, He Y, Li H, Huang P, Zhong W, Yang H, Zhang H, Tan M, Duan ZJ (2013) Two gastroenteritis outbreaks caused by GII Noroviruses: host susceptibility and HBGA phenotypes. PLoS One 8(3):e58605. https://doi.org/10.1371/journal.pone.0058605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma X, Li DD, Sun XM, Guo YQ, Xiang JY, Wang WH, Zhang LX, Gu QJ, Duan ZJ (2015) Binding patterns of rotavirus genotypes P[4], P[6], and P[8] in China with histo-blood group antigens. PLoS One 10(8):e0134584. https://doi.org/10.1371/journal.pone.0134584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angel J, Franco MA, Greenberg HB (2012) Rotavirus immune responses and correlates of protection. Curr Opin Virol 2(4):419–425. https://doi.org/10.1016/j.coviro.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee B, Dickson DM, deCamp AC, Ross Colgate E, Diehl SA, Uddin MI, Sharmin S, Islam S, Bhuiyan TR, Alam M, Nayak U, Mychaleckyj JC, Taniuchi M, Petri WA Jr, Haque R, Qadri F, Kirkpatrick BD (2018) Histo-blood group antigen phenotype determines susceptibility to genotype-specific rotavirus infections and impacts measures of rotavirus vaccine efficacy. J Infect Dis 217(9):1399–1407. https://doi.org/10.1093/infdis/jiy054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollock L, Bennett A, Jere KC, Dube Q, Mandolo J, Bar-Zeev N, Heyderman RS, Cunliffe NA, Iturriza-Gomara M (2019) Nonsecretor histo-blood group antigen phenotype is associated with reduced risk of clinical rotavirus vaccine failure in malawian infants. Clin Infect Dis 69(8):1313–1319. https://doi.org/10.1093/cid/ciy1067

    Article  CAS  PubMed  Google Scholar 

  28. Wang YH, Pang BB, Ghosh S, Zhou X, Shintani T, Urushibara N, Song YW, He MY, Liu MQ, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N (2014) Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One 9(3):e88850. https://doi.org/10.1371/journal.pone.0088850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sai L, Sun J, Shao L, Chen S, Liu H, Ma L (2013) Epidemiology and clinical features of rotavirus and norovirus infection among children in Ji’nan, China. Virol J 10:302. https://doi.org/10.1186/1743-422X-10-302

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen Z, Wang G, Zhang W, Qian F, Li Y, Zhang M, Gu S, Wang M, Lin F, Hu Y, Yuan Z, Zhang J (2013) Rotavirus infection and its genetic characterization in non-hospitalized adults with acute gastroenteritis in Shanghai, China. Arch Virol 158(8):1671–1677. https://doi.org/10.1007/s00705-013-1663-1

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Lai S, Geng Q, Ye C, Zhang Z, Zheng Y, Wang L, Duan Z, Zhang J, Wu S, Parashar U, Yang W, Liao Q, Li Z (2018) Prevalence of rotavirus and rapid changes in circulating rotavirus strains among children with acute diarrhea in China, 2009–2015. J Infect. https://doi.org/10.1016/j.jinf.2018.07.004

    Article  PubMed  Google Scholar 

  32. Jones FK, Ko AI, Becha C, Joshua C, Musto J, Thomas S, Ronsse A, Kirkwood CD, Sio A, Aumua A, Nilles EJ (2016) Increased rotavirus prevalence in diarrheal outbreak precipitated by localized flooding, Solomon Islands, 2014. Emerg Infect Dis 22(5):875–879. https://doi.org/10.3201/eid2205.151743

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kaplon J, Grangier N, Pillet S, Minoui-Tran A, Vabret A, Wilhelm N, Prieur N, Lazrek M, Alain S, Mekki Y, Foulongne V, Guinard J, Avettand-Fenoel V, Schnuriger A, Beby-Defaux A, Lagathu G, Pothier P, de Rougemont A (2018) Predominance of G9P[8] rotavirus strains throughout France, 2014–2017. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2017.10.009

    Article  PubMed  Google Scholar 

  34. Xu C, Fu J, Ai J, Zhang J, Liu C, Huo X, Bao C, Zhu Y (2018) Phylogenetic analysis of human G9P[8] rotavirus strains circulating in Jiangsu, China between 2010 and 2016. J Med Virol 90(9):1461–1470. https://doi.org/10.1002/jmv.25214

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Zhang J, Liu P (2017) Clinical and molecular epidemiologic trends reveal the important role of rotavirus in adult infectious gastroenteritis, in Shanghai, China. Infect Genet Evol 47:143–154. https://doi.org/10.1016/j.meegid.2016.11.018

    Article  PubMed  Google Scholar 

  36. Trang NV, Vu HT, Le NT, Huang PW, Jiang X, Anh DD (2014) Association between norovirus and rotavirus infection and histo-blood group antigen types in vietnamese children. J Clin Microbiol 52(5):1366–1374. https://doi.org/10.1128/Jcm.02927-13

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nordgren J, Sharma S, Bucardo F, Nasir W, Gunaydin G, Ouermi D, Nitiema LW, Becker-Dreps S, Simpore J, Hammarstrom L, Larson G, Svensson L (2014) Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin Infect Dis 59(11):1567–1573. https://doi.org/10.1093/cid/ciu633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kazi AM, Cortese MM, Yu Y, Lopman B, Morrow AL, Fleming JA, McNeal MM, Steele AD, Parashar UD, Zaidi AKM, Ali A (2017) Secretor and salivary ABO blood group antigen status predict rotavirus vaccine take in infants. J Infect Dis 215(5):786–789. https://doi.org/10.1093/infdis/jix028

    Article  CAS  PubMed  Google Scholar 

  39. Bucardo F, Nordgren J, Reyes Y, Gonzalez F, Sharma S, Svensson L (2018) The Lewis A phenotype is a restriction factor for Rotateq and Rotarix vaccine-take in Nicaraguan children. Sci Rep 8(1):1502. https://doi.org/10.1038/s41598-018-19718-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu D, Yen C, Yin ZD, Li YX, Liu N, Liu YM, Wang HQ, Cui FQ, Gregory CJ, Tate JE, Parashar UD, Yin DP, Li L (2016) The public health burden of rotavirus disease in children younger than five years and considerations for rotavirus vaccine introduction in China. Pediatr Infect Dis J 35(12):E392–E398. https://doi.org/10.1097/Inf.0000000000001327

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the Centers for Disease Control and Prevention of the city of Shaoguan during the investigation of the outbreak. This work was supported by the National Natural Science Foundation of China (31771007, 81773975, and 81473402) and the National Natural Science Foundation of Guangdong Province (2019A1515010951). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Fu Zhang or Ying-Chun Dai.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

The study protocol was approved by the ethics committee of Guangdong Center for Disease Control and Prevention (GDCDC-W96-027B-2014.100). As the investigation was an urgent public health response to the outbreak and interviewing and sample collection posed minimal risks, parental/guardian consent and written informed consent were waived by the ethics committee of Guangdong Center Disease Control and Prevention. Instead, all samples were collected with oral informed consent from participants.

Additional information

Handling Editor: Reimar Johne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, LA., Zhang, M., Hou, Yz. et al. Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China. Arch Virol 165, 1311–1320 (2020). https://doi.org/10.1007/s00705-020-04608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04608-4

Navigation