Skip to main content

Advertisement

Log in

Genome-wide identification of long non-coding RNAs and circular RNAs reveal their ceRNA networks in response to cucumber green mottle mosaic virus infection in watermelon

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in plant defense responses against viral infections. However, there is no systematic understanding of lncRNAs and circRNAs and their competing endogenous RNA (ceRNA) networks in watermelon under cucumber green mottle mosaic virus (CGMMV) stress. Here, we present the characterization and expression profiles of lncRNAs and circRNAs in watermelon leaves 48-h post-inoculation (48 hpi) with CGMMV, with mock inoculation as a control. Deep sequencing analysis revealed 2373 lncRNAs and 606 circRNAs in the two libraries. Among them, 67 lncRNAs (40 upregulated and 27 downregulated) and 548 circRNAs (277 upregulated and 271 downregulated) were differentially expressed (DE) in the 48 hpi library compared with the control library. Furthermore, 263 cis-acting matched lncRNA–mRNA pairs were detected for 49 of the DE-lncRNAs. KEGG pathway analysis of the cis target genes of the DE-lncRNAs revealed significant associations with phenylalanine metabolism, the citrate cycle (TCA cycle), and endocytosis. Additionally, 30 DE-lncRNAs were identified as putative target mimics of 33 microRNAs (miRNAs), and 153 DE-circRNAs were identified as putative target mimics of 88 miRNAs. Furthermore, ceRNA networks of lncRNA/circRNA–miRNA–mRNA in response to CGMMV infection are described, with 12 DE-lncRNAs and 65 DE-circRNAs combining with 22 miRNAs and competing for the miRNA binding sites on 29 mRNAs. The qRT-PCR validation of selected lncRNAs and circRNAs showed a general correlation with the high-throughput sequencing results. This study provides a valuable resource of lncRNAs and circRNAs involved in the response to CGMMV infection in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of sequencing data and materials

The datasets generated and analyzed during the current study are publicly available in NCBI-BioProject with the accession number of PRJNA534308.

References

  1. Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, Alonso J, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007) Genome-wide high resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131:1340–1353

    CAS  Google Scholar 

  2. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    CAS  Google Scholar 

  3. Cui J, You C, Chen X (2017) The evolution of microRNAs in plants. Curr Opin Plant Biol 35:61–67

    CAS  Google Scholar 

  4. Li M, Li Y, Xia Z, Di D, Zhang A, Miao H, Zhou T, Fan Z (2017) Characterization of small interfering RNAs derived from Rice black streaked dwarf virus in infected maize plants by deep sequencing. Virus Res 228:66–74

    CAS  Google Scholar 

  5. Carbonell A, Daròs JA (2017) Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. Mol Plant Pathol 18(5):746–753

    CAS  Google Scholar 

  6. Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453

    CAS  Google Scholar 

  7. Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21(12):2076–2087

    CAS  Google Scholar 

  8. Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y (2012) A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 9:302–313

    CAS  Google Scholar 

  9. Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    CAS  Google Scholar 

  10. Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014) Genome-wide discovery and characterization of maize long noncoding RNAs. Genome Biol 15(2):R40

    Google Scholar 

  11. Shin JH, Chekanova JA (2014) Arabidopsis RRP6l1 and RRP6l2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet 10:e1004612

    Google Scholar 

  12. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    CAS  Google Scholar 

  13. Ma X, Shao C, Jin Y, Wang H, Meng Y (2014) Long non-coding RNAs: a novel endogenous source for the generation of Dicer-like 1-dependent small RNAs in Arabidopsis thaliana. RNA Biol 11(4):373–390

    CAS  Google Scholar 

  14. Yuan J, Li J, Yang Y, Tan C, Zhu Y, Hu L, Qi Y, Lu ZJ (2018) Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. Plant J 93(5):814–827

    CAS  Google Scholar 

  15. Wang J, Yu W, Yang Y, Li X, Chen T, Liu T, Ma N, Yang X, Liu R, Zhang B (2015) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946

    CAS  Google Scholar 

  16. Wang J, Yang Y, Jin L, Ling X, Liu T, Chen T, Ji Y, Yu W, Zhang B (2018) Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol 18(1):104

    Google Scholar 

  17. Wang A, Hu J, Gao C, Chen G, Wang B, Lin C, Song L, Ding Y, Zhou G (2019) Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp.chinensis). Sci Rep 9(1):5002

    Google Scholar 

  18. He X, Guo S, Wang Y, Wang L, Shu S, Sun J (2019) Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L.). Physiol Plant. https://doi.org/10.1111/ppl.12997

    Article  Google Scholar 

  19. Tian Y, Bai S, Dang Z, Hao J, Zhang J, Hasi A (2019) Genome-wide identification and characterization of long non-coding RNAs involved in fruit ripening and the climacteric in Cucumis melo. BMC Plant Biol 19(1):369

    Google Scholar 

  20. Yang Y, Liu T, Shen D, Wang J, Ling X, Hu Z, Chen T, Hu J, Huang J, Yu W, Dou D, Wang MB, Zhang B (2019) Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog 15(1):e1007534

    Google Scholar 

  21. Gao R, Liu P, Irwanto N, Loh R, Wong SM (2016) Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana. Plant Cell Rep 35(11):2257–2267

    CAS  Google Scholar 

  22. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73:3852–3856

    CAS  Google Scholar 

  23. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    CAS  Google Scholar 

  24. Li X, Yang L, Chen LL (2018) The Biogenesis, functions, and challenges of circular RNAs. Mol Cell 71(3):428–442

    CAS  Google Scholar 

  25. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842

    CAS  Google Scholar 

  26. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    CAS  Google Scholar 

  27. Darbani B, Noeparvar S, Borg S (2016) Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Front Plant Sci 7:776

    Google Scholar 

  28. Pan T, Sun X, Liu Y, Li H, Deng G, Lin H, Wang S (2018) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96(3):217–229

    CAS  Google Scholar 

  29. Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053

    CAS  Google Scholar 

  30. Wang Y, Gao Y, Zhang H, Wang H, Liu X, Xu X, Zhang Z, Kohnen MV, Hu K, Wang H, Xi F, Zhao L, Lin C, Gu L (2019) Genome-Wide profiling of circular RNAs in the rapidly growing shoots of moso bamboo (Phyllostachys edulis). Plant Cell Physiol 60(6):1354–1373

    CAS  Google Scholar 

  31. Ghorbani A, Izadpanah K, Peters JR, Dietzgen RG, Mitter N (2018) Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. Plant Sci 274:402–409

    CAS  Google Scholar 

  32. Wang Y, Wang Q, Gao L, Zhu B, Luo Y, Deng Z, Zuo J (2017) Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato. Physiol Plant 161(3):311–321

    CAS  Google Scholar 

  33. Zhu YX, Jia JH, Yang L, Xia YC, Zhang HL, Jia JB, Zhou R, Nie PY, Yin JL, Ma DF, Liu LC (2019) Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol 19(1):164

    Google Scholar 

  34. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    CAS  Google Scholar 

  35. Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161(4):1875–1884

    CAS  Google Scholar 

  36. Dombrovsky A, Tran-Nguyen LTT, Jones RAC (2017) Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology and management. Ann Rev Phytopathol 55:231–256

    CAS  Google Scholar 

  37. Li X, An M, Xia Z, Bai X, Wu Y (2017) Transcriptome analysis of watermelon (Citrullus lanatus) fruits in response to Cucumber green mottle mosaic virus (CGMMV) infection. Sci Rep 7(1):16747

    Google Scholar 

  38. Sun Y, Fan M, He Y (2019) Transcriptome analysis of watermelon leaves reveals candidate genes responsive to Cucumber green mottle mosaic virus infection. Int J Mol Sci 20(3):610

    CAS  Google Scholar 

  39. Sun Y, Niu X, Fan M (2017) Genome-wide identification of cucumber green mottle mosaic virus-responsive microRNAs in watermelon. Arch Virol 162(9):2591–2602

    CAS  Google Scholar 

  40. Sun Y, Fan M, He Y (2019) DNA methylation analysis of the Citrullus lanatus response to Cucumber green mottle mosaic virus infection by whole-genome bisulfite sequencing. Genes (Basel) 10(5):344

    CAS  Google Scholar 

  41. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Google Scholar 

  42. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    CAS  Google Scholar 

  43. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Google Scholar 

  44. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    CAS  Google Scholar 

  45. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:345–349

    Google Scholar 

  46. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41(17):e166

    CAS  Google Scholar 

  47. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    CAS  Google Scholar 

  48. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    CAS  Google Scholar 

  49. Kim D, Salzberg SL (2011) Tophat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72

    CAS  Google Scholar 

  50. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    CAS  Google Scholar 

  51. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    CAS  Google Scholar 

  52. Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol 33(3):243–246

    CAS  Google Scholar 

  53. Robinson MD, McCarthy DJ, Smyth GK (2010) Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  Google Scholar 

  54. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Google Scholar 

  55. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CAS  Google Scholar 

  56. Pearson WR (2016) Finding protein and nucleotide similarities with FASTA. Curr Protoc Bioinform 53:325–391

    Google Scholar 

  57. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  Google Scholar 

  58. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  59. Meng X, Zhang P, Chen Q, Wang J, Chen M (2018) Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genom 19(1):607

    Google Scholar 

  60. Seo JS, Sun HX, Park BS, Huang CH, Yeh SD, Jung C, Chua NH (2017) ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell 29(5):1024–1038

    CAS  Google Scholar 

  61. Cui J, Luan Y, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89(3):577–589

    CAS  Google Scholar 

  62. Cui J, Jiang N, Meng J, Yang G, Liu W, Zhou X, Ma N, Hou X, Luan Y (2019) LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato- Phytophthora infestans interactions. Plant J 97(5):933–946

    CAS  Google Scholar 

  63. Kapusta A, Feschotte C (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 30(10):439–452

    CAS  Google Scholar 

  64. Li X, Xing X, Xu S, Zhang M, Wang Y, Wu H, Sun Z, Huo Z, Chen F, Yang T (2018) Genome-wide identification and functional prediction of tobacco lncRNAs responsive to root-knot nematode stress. PLoS One 13(11):e0204506

    Google Scholar 

  65. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037

    CAS  Google Scholar 

  66. Jiang N, Cui J, Shi Y, Yang G, Zhou X, Hou X, Meng J, Luan Y (2019) Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic Res 6:28

    Google Scholar 

  67. Cui J, Jiang N, Hou X, Wu S, Zhang Q, Meng J, Luan Y (2020) Genome-wide identification of lncRNAs and Analysis of CeRNA networks during tomato resistance to Phytophthora infestans. Phytopathology 110(2):456–464

    CAS  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (31902036) and Zhejiang Provincial Natural Science Foundation of China (LQ18C150002). We thank Margaret Biswas, PhD, from Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YYS and MF conceived and designed the experiments; YYS carried out the bioinformatics analysis; YYS and HQZ carried out the experimental analysis; YYS wrote the manuscript; and MF, YJH and PAG gave insightful suggestions.

Corresponding author

Correspondence to Min Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Massimo Turina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, H., Fan, M. et al. Genome-wide identification of long non-coding RNAs and circular RNAs reveal their ceRNA networks in response to cucumber green mottle mosaic virus infection in watermelon. Arch Virol 165, 1177–1190 (2020). https://doi.org/10.1007/s00705-020-04589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04589-4

Navigation