Skip to main content

Advertisement

Log in

Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Reoviridae, and has a genome consisting of 10 linear double-stranded (ds) RNA segments. The current reverse genetics system (RGS) for engineering the EHDV genome relies on the use of in vitro-synthesized capped viral RNA transcripts. To obtain more-efficient and simpler RGSs for EHDV, we developed an entirely DNA (plasmid or PCR amplicon)-based RGS for viral rescue. This RGS enabled the rescue of infectious EHDV from BSR-T7 cells following co-transfection with seven helper viral protein expression plasmids and 10 cDNA rescue plasmids or PCR amplicons representing the EHDV genome. Furthermore, we optimized the DNA-based systems and confirmed that some of the helper expression plasmids were not essential for the recovery of infectious EHDV. Thus, DNA-based RGSs may offer a more efficient method of recombinant virus recovery and accelerate the study of the biological characteristics of EHDV and the development of novel vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maclachlan NJ, Zientara S, Savini G, Daniels PW (2015) Epizootic haemorrhagic disease. Rev Sci Tech. 34(2):341–351

    Article  CAS  PubMed  Google Scholar 

  2. Savini G, Afonso A, Mellor P, Aradaib I, Yadin H, Sanaa M et al (2011) Epizootic heamorragic disease. Res Vet Sci. 91(1):1–17

    Article  CAS  PubMed  Google Scholar 

  3. Abu EE, Gameel AA, Al-Afaleq AI, Hassanein MM (1992) Isolation of a virus serologically related to the bluetongue group from an outbreak of haemorrhagic disease among exotic deer in Saudi Arabia. Vet Record. 131(19):439–441

    Article  Google Scholar 

  4. Inaba U (1975) Ibaraki disease and its relationship to bluetongue. Aust Vet J. 51(4):178–185

    Article  CAS  PubMed  Google Scholar 

  5. Ohashi S, Yoshida K, Watanabe Y, Tsuda T (1999) Identification and PCR-restriction fragment length polymorphism analysis of a variant of the Ibaraki virus from naturally infected cattle and aborted fetuses in Japan. J Clin Microbiol. 37(12):3800–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen SE, Rothenburger JL, Jardine CM, Ambagala A, Hooper-McGrevy K, Colucci N et al (2019) Epizootic Hemorrhagic Disease in White-Tailed Deer, Canada. Emerg Infect Dis. 25(4):832–834

    Article  PubMed  PubMed Central  Google Scholar 

  7. Breard E, Sailleau C, Hamblin C, Graham SD, Gourreau JM, Zientara S (2004) Outbreak of epizootic haemorrhagic disease on the island of Reunion. Vet Rec. 155(14):422

    Article  CAS  PubMed  Google Scholar 

  8. Golender N, Bumbarov VY (2019) Detection of Epizootic Hemorrhagic Disease Virus Serotype 1, Israel. Emerg Infect Dis. 25(4):825–827

    Article  PubMed  PubMed Central  Google Scholar 

  9. Golender N, Khinich Y, Gorohov A, Abramovitz I, Bumbarov V (2017) Epizootic hemorrhagic disease virus serotype 6 outbreak in Israeli cattle in 2015. J Vet Diagn Invest. 29(6):885–888

    Article  PubMed  Google Scholar 

  10. Kamomae Y, Kamomae M, Ohta Y, Nabe M, Kagawa Y, Ogura Y et al (2018) Epizootic Hemorrhagic Disease Virus Serotype 6 Infection in Cattle, Japan, 2015. Emerg Infect Dis. 24(5):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Temizel EM, Yesilbag K, Batten C, Senturk S, Maan NS, Mertens PPC et al (2009) Epizootic Hemorrhagic Disease in Cattle, Western Turkey. Emerg Infect Dis 15(2):317–319

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yadin H, Brenner J, Bumbrov V, Oved Z, Stram Y, Klement E et al (2008) Epizootic haemorrhagic disease virus type 7 infection in cattle in Israel. Vet Rec. 162(2):53–56

    Article  CAS  PubMed  Google Scholar 

  13. Anthony SJ, Maan N, Maan S, Sutton G, Attoui H, Mertens PP (2009) Genetic and phylogenetic analysis of the core proteins VP1, VP3, VP4, VP6 and VP7 of epizootic haemorrhagic disease virus (EHDV). Virus Res 145(2):187–199

    Article  CAS  PubMed  Google Scholar 

  14. Anthony SJ, Maan N, Maan S, Sutton G, Attoui H, Mertens PP (2009) v. Virus Res 145(2):211–219

    Article  CAS  PubMed  Google Scholar 

  15. Anthony SJ, Maan S, Maan N, Kgosana L, Bachanek-Bankowska K, Batten C et al (2009) Genetic and phylogenetic analysis of the outer-coat proteins VP2 and VP5 of epizootic haemorrhagic disease virus (EHDV): comparison of genetic and serological data to characterise the EHDV serogroup. Virus Res. 145(2):200–210

    Article  CAS  PubMed  Google Scholar 

  16. Boyce M, Celma CC, Roy P (2008) Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. J Virol. 82(17):8339–8348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conradie AM, Stassen L, Huismans H, Potgieter CA, Theron J (2016) Establishment of different plasmid only-based reverse genetics systems for the recovery of African horse sickness virus. Virology. 499:144–155

    Article  CAS  PubMed  Google Scholar 

  18. Kaname Y, Celma CC, Kanai Y, Roy P (2013) Recovery of African horse sickness virus from synthetic RNA. J Gen Virol. 94(Pt 10):2259–2265

    Article  CAS  PubMed  Google Scholar 

  19. Pretorius JM, Huismans H, Theron J (2015) Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus. Virology. 486:71–77

    Article  CAS  PubMed  Google Scholar 

  20. Yang T, Zhang J, Xu Q, Sun E, Li J, Lv S et al (2015) Development of a reverse genetics system for epizootic hemorrhagic disease virus and evaluation of novel strains containing duplicative gene rearrangements. J Gen Virol. 96(9):2714–2720

    Article  CAS  PubMed  Google Scholar 

  21. Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC (1994) Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151(1–2):119–123

    Article  CAS  PubMed  Google Scholar 

  22. van de Water SGP, van Gennip RGP, Potgieter CA, Wright IM, van Rijn PA (2015) VP2 exchange and NS3/NS3a deletion in African Horse Sickness Virus (AHSV) in development of disabled infectious single animal vaccine candidates for AHSV. J Virol 89(17):8764–8772

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Rijn PA, van de Water SG, Feenstra F, van Gennip RG (2016) Requirements and comparative analysis of reverse genetics for bluetongue virus (BTV) and African horse sickness virus (AHSV). Virol J 13:119

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsuo E, Roy P (2013) Minimum requirements for bluetongue virus primary replication in vivo. J Virol 87(2):882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuo E, Roy P (2009) Bluetongue virus VP6 acts early in the replication cycle and can form the basis of chimeric virus formation. J Virol 83(17):8842–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sung PY, Vaughan R, Rahman SK, Yi GH, Kerviel A, Kao CC et al (2019) The interaction of bluetongue virus VP6 and genomic RNA is essential for genome packaging. J Virol 93:5

    Article  Google Scholar 

  27. Uitenweerde JM, Theron J, Stoltz MA, Huismans H (1995) The multimeric nonstructural Ns2 proteins of bluetongue virus, African Horsesickness virus, and Epizootic Hemorrhagic-Disease virus differ in their single-stranded rna-binding ability. Virology. 209(2):624–632

    Article  CAS  PubMed  Google Scholar 

  28. Boyce M, Celma CCP, Roy P (2012) Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis. Virol J 2012:9

    Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (2017YFD0500903) and the Central Public-Interest Scientific Institution Basal Fund (1610302016008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encheng Sun.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Zhenhai Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Pretorius, J.M., Xu, Q. et al. Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus. Arch Virol 165, 1079–1087 (2020). https://doi.org/10.1007/s00705-020-04583-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04583-w

Navigation