Skip to main content

Advertisement

Log in

Blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue injury in chronic hepatitis C patients

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Oxidative stress is the process by which reactive molecules and free radicals are formed in cells. In this study, we report the blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue in chronic hepatitis C (CHC) patients by using real-time PCR. A total of 144 untreated patients diagnosed with CHC having genotype 3a and 20 healthy controls were selected for the present study. Liver biopsy staging and grading of CHC patients were performed using the METAVIR score. Total RNA was extracted from liver tissue and blood samples, followed by cDNA synthesis and real-time PCR. The relative expression of genes was calculated using the ΔΔCt method. The expression profile of 84 genes associated with oxidative stress and antioxidants was determined in liver tissue and blood samples. In liver tissue, 46 differentially expressed genes (upregulated, 27; downregulated, 19) were identified in CHC patients compared to normal samples. In blood, 61 genes (upregulated, 51; downregulated; 10) were significantly expressed in CHC patients. A comparison of gene expression in liver and whole blood showed that 20 genes were expressed in a similar manner in the liver and blood. The expression levels of commonly expressed liver and blood-based genes were also correlated with clinical factors in CHC patients. A receiver operating curve (ROC) analysis of oxidative stress genes (ALB, CAT, DHCR24, GPX7, PRDX5, and MBL2) showed that infections in patients with CHC can be distinguished from healthy controls. In conclusion, blood-based gene expression can reflect the behavior of oxidative stress genes in liver tissue, and this blood-based gene expression study in CHC patients explores new blood-based non-invasive biomarkers that represent liver damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adinolfi LE, Gambardella M, Andreana A, Tripodi M-f, Utili R, Ruggiero G (2001) Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 33:1358–1364

    CAS  PubMed  Google Scholar 

  2. Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicologic pathology 35:459–473

    CAS  PubMed  Google Scholar 

  3. Anzola M (2004) Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J Viral Hepat 11:383–393

    CAS  PubMed  Google Scholar 

  4. Aziz H, Gil ML, Waheed Y, Adeeb U, Raza A, Bilal I, Athar MA (2011) Evaluation of prognostic factors for peg interferon alfa-2b plus ribavirin treatment on HCV infected patients in Pakistan. Infect Genet Evol 11:640–645

    CAS  PubMed  Google Scholar 

  5. Bièche I, Asselah T, Laurendeau I, Vidaud D, Degot C, Paradis V, Bedossa P, Valla D-C, Marcellin P, Vidaud M (2005) Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology 332:130–144

    PubMed  Google Scholar 

  6. Bisceglie AMD (1997) Hepatitis C and hepatocellular carcinoma. Hepatology 26:34S–38S

    PubMed  Google Scholar 

  7. Blackham S, Baillie A, Al-Hababi F, Remlinger K, You S, Hamatake R, McGarvey MJ (2010) Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J Virol 84:5404–5414

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brault C, Lévy P, Duponchel S, Michelet M, Sallé A, Pécheur E-I, Plissonnier M-L, Parent R, Véricel E, Ivanov AV (2016) Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity. Gut 65:144–154

    CAS  PubMed  Google Scholar 

  9. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    PubMed  Google Scholar 

  10. Brown CO, Schibler J, Fitzgerald MP, Singh N, Salem K, Zhan F, Goel A (2013) Scavenger receptor class A member 3 (SCARA3) in disease progression and therapy resistance in multiple myeloma. Leuk Res 37:963–969

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown KS, Keogh MJ, Tagiuri N, Grainge MJ, Presanis JS, Ryder SD, Irving WL, Ball JK, Sim RB, Hickling TP (2007) Severe fibrosis in hepatitis C virus-infected patients is associated with increased activity of the mannan-binding lectin (MBL)/MBL-associated serine protease 1 (MASP-1) complex. Clin Exp Immunol 147:90–98

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown KS, Keogh MJ, Owsianka AM, Adair R, Patel AH, Arnold JN, Ball JK, Sim RB, Tarr AW, Hickling TP (2010) Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry. Protein Cell 1:664–674

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruhn MA, Pearson RB, Hannan RD, Sheppard KE (2010) Second AKT: the rise of SGK in cancer signalling. Growth Factors 28:394–408

    CAS  PubMed  Google Scholar 

  14. Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed invertebrate tissues. Mol Biol Evol 19:416–421

    CAS  PubMed  Google Scholar 

  15. Cardin R (2001) DNA oxidative damage in leukocytes with the severity of HCV-related liver disease: validation in an open population study. J Heptol 35:587–592

    Google Scholar 

  16. Casaril M, Gabrielli GB, Dusi S, Nicoli N, Bellisola G, Corrocher R (1985) Decreased activity of liver glutathione peroxidase in human hepatocellular carcinoma. Eur J Cancer 21:941–944

    CAS  Google Scholar 

  17. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai K-M, Ji J, Dudoit S, Ng IOL (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13:1929–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38

    CAS  PubMed  Google Scholar 

  19. Crameri A, Biondi E, Kuehnle K, Lütjohann D, Thelen KM, Perga S, Dotti CG, Nitsch RM, Ledesma MD, Mohajeri MH (2006) The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Aβ generation in vivo. EMBO J 25:432–443

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Culotta VC, Klomp LW, Strain J, Casareno RLB, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472

    CAS  PubMed  Google Scholar 

  21. d’Avigdor W, Budzinska M, Lee M, Lam R, Kench J, Stapelberg M, McLennan S, Farrell G, George J, McCaughan G (2019) Virus genotype-dependent transcriptional alterations in lipid metabolism and inflammation pathways in the hepatitis C virus-infected liver. Sci Rep 9:1–12

    Google Scholar 

  22. Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS One 9:e111988

    PubMed  PubMed Central  Google Scholar 

  23. DeWitte-Orr SJ, Collins SE, Bauer CMT, Bowdish DM, Mossman KL (2010) An accessory to the ‘Trinity’: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog 6:e1000829

    PubMed  PubMed Central  Google Scholar 

  24. Dirksen K, Spee B, Penning LC, van den Ingh TS, Burgener IA, Watson AL, Koerkamp MG, Rothuizen J, van Steenbeek FG, Fieten H (2017) Gene expression patterns in the progression of canine copper-associated chronic hepatitis. PLoS One 12:e0176826

    PubMed  PubMed Central  Google Scholar 

  25. Erhardt A, Hassan M, Heintges T, Häussinger D (2002) Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology 292:272–284

    CAS  PubMed  Google Scholar 

  26. Estrabaud E, Appourchaux K, Bieche I, Carrat F, Lapalus M, Lada O, Martinot-Peignoux M, Boyer N, Marcellin P, Vidaud M (2015) IFI35, mir-99a and HCV genotype to predict sustained virological response to pegylated-interferon plus ribavirin in chronic hepatitis C. PLoS One 10:e0121395

    PubMed  PubMed Central  Google Scholar 

  27. Eun HS, Cho SY, Lee BS, Seong IO, Kim KH (2018) Profiling cytochrome P450 family 4 gene expression in human hepatocellular carcinoma. Mol Med Rep 18:4865–4876

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Farinati F, Cardin R, Bortolami M, Burra P, Russo FP, Rugge M, Guido M, Sergio A, Naccarato R (2007) Hepatitis C virus: from oxygen free radicals to hepatocellular carcinoma. J Viral Hepat 14:821–829

    CAS  PubMed  Google Scholar 

  29. Firestone G, Giampaolo J, O’Keeffe B (2003) Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell Physiol Biochem 13:1–12

    CAS  PubMed  Google Scholar 

  30. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Gonçales FL Jr, Häussinger D, Diago M, Carosi G, Dhumeaux D (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347:975–982

    CAS  PubMed  Google Scholar 

  31. Gong G, Waris G, Tanveer R, Siddiqui A (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc Natl Acad Sci 98:9599–9604

    CAS  PubMed  Google Scholar 

  32. Guerriero E, Capone F, Accardo M, Sorice A, Costantini M, Colonna G, Castello G, Costantini S (2015) GPX4 and GPX7 over-expression in human hepatocellular carcinoma tissues. Eur J Histochem 59(4):2540. https://doi.org/10.4081/ejh.2015.2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo X, Shin VY, Cho CH (2001) Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases. Life Sci 69:3113–3119

    CAS  PubMed  Google Scholar 

  34. Halligan KE, Jourd’heuil FL, Jourd’heuil D (2009) Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem 284(13):8539–8547. https://doi.org/10.1074/jbc.M808231200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han H-J, Tokino T, Nakamura Y (1998) CSR, a scavenger receptor-like protein with a protective role against cellular damage caused by UV irradiation and oxidative stress. Hum Mol Genet 7:1039–1046

    CAS  PubMed  Google Scholar 

  36. Idrees M, Riazuddin S (2008) Frequency distribution of hepatitis C virus genotypes in different geographical regions of Pakistan and their possible routes of transmission. BMC Infect Dis 8:69

    PubMed  PubMed Central  Google Scholar 

  37. Idrees M, Rafique S, Rehman I-u, Akbar H, Yousaf MZ, Butt S, Awan Z, Manzoor S, Akram M, Aftab M (2009) Hepatitis C virus genotype 3a infection and hepatocellular carcinoma: Pakistan experience. World J Gastroenterol 15:5080

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Immenschuh S, Ramadori G (2000) Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol 60:1121–1128

    CAS  PubMed  Google Scholar 

  39. Jian WU, Karlsson K, Danielsson A (1997) Effects of vitamins E, C and catalase on bromobenzene-and hydrogen peroxide-induced intracellular oxidation and DNA single-strand breakage in Hep G2 cells. J Hepatol 26:669–677

    Google Scholar 

  40. Jiang L, Hu G, Chen F, Du X, Liu B, Liu C (2017) CSR1 suppresses tumor growth and metastasis of human hepatocellular carcinoma via inhibition of HPIP. Eur Rev Med Pharmacol Sci 21:3813–3820

    CAS  PubMed  Google Scholar 

  41. Jin D-Y, Chae HZ, Rhee SG, Jeang K-T (1997) Regulatory role for a novel human thioredoxin peroxidase in NF-κB activation. J Biol Chem 272:30952–30961

    CAS  PubMed  Google Scholar 

  42. Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Müller H-M, Botella-Munoz J, Schneuwly S, Schirmer RH, Becker K (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643–646

    CAS  PubMed  Google Scholar 

  43. Kedjouar B, De Médina P, Oulad-Abdelghani M, Payré B, Silvente-Poirot S, Favre G, Faye J-C, Poirot M (2004) Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem 279:34048–34061

    CAS  PubMed  Google Scholar 

  44. Kobayashi T, Cohen P (1999) Activation of serum-and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339:319–328

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kundu TK, Velayutham M, Zweier JL (2012) Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51:2930–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Larrea E, Beloqui O, Muñoz-Navas M-A, Ma-P Civeira, Prieto J (1998) Superoxide dismutase in patients with chronic hepatitis C virus infection. Free Radic Biol Med 24:1235–1241

    CAS  PubMed  Google Scholar 

  47. Li D, Chen XQ, Li W-J, Yang Y-H, Wang J-Z, Yu ACH (2007) Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res 32:1375–1380

    CAS  PubMed  Google Scholar 

  48. Li L, Frei B (2009) Prolonged exposure to LPS increases iron, heme, and p22phox levels and NADPH oxidase activity in human aortic endothelial cells: inhibition by desferrioxamine. Arterioscler Thromb Vasc Biol 29:732–738

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu J, Zhang G, Lv Y, Zhang X, Ying C, Yang S, Kong X, Yu Y (2017) SGK2 promotes hepatocellular carcinoma progression and mediates GSK-3β/β-catenin signaling in HCC cells. Tumor Biol 39:1010428317700408

    Google Scholar 

  50. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  51. Loffing J, Flores SY, Staub O (2006) Sgk kinases and their role in epithelial transport. Annu Rev Physiol 68:461–490

    CAS  PubMed  Google Scholar 

  52. Lozano-Sepulveda SA, Bautista-Osorio E, Merino-Mascorro JA, Varela-Rey M, Muñoz-Espinosa LE, Cordero-Perez P, Martinez-Chantar ML, Rivas-Estilla AM (2016) S-adenosyl-L-methionine modifies antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells. World J Gastroenterol 22:3746

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu M-Y, Huang C-I, Hsieh M-Y, Hsieh T-J, Hsi E, Tsai P-C, Tsai Y-S, Lin C-C, Hsieh M-H, Liang P-C (2016) Dynamics of PBMC gene expression in hepatitis C virus genotype 1-infected patients during combined peginterferon/ribavirin therapy. Oncotarget 7:61325

    PubMed  PubMed Central  Google Scholar 

  54. Lu X, Kambe F, Cao X, Kozaki Y, Kaji T, Ishii T, Seo H (2008) 3β-Hydroxysteroid-Δ24 reductase is a hydrogen peroxide scavenger, protecting cells from oxidative stress-induced apoptosis. Endocrinology 149:3267–3273

    CAS  PubMed  Google Scholar 

  55. Machida K, Cheng KTH, Lai C-K, Jeng K-S, Sung VMH, Lai MMC (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Marques VB, Nascimento TB, Ribeiro RF Jr, Broseghini-Filho GB, Rossi EM, Graceli JB, dos Santos L (2015) Chronic iron overload in rats increases vascular reactivity by increasing oxidative stress and reducing nitric oxide bioavailability. Life Sci 143:89–97

    CAS  PubMed  Google Scholar 

  57. Minutolo A, Conti B, Grelli S, Viscomi C, Labbadia G, Balsano C (2014) Lymphocytes as liver damage mirror of HCV related adipogenesis deregulation. PLoS One 9:e92343

    PubMed  PubMed Central  Google Scholar 

  58. Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW (2005) Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Investig 115:2192–2201

    CAS  PubMed  Google Scholar 

  59. Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Miyazawa T, Ishibashi K, Horie T (2001) Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365–4370

    CAS  PubMed  Google Scholar 

  60. Motohashi H, Yamamoto M (2004) Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    CAS  PubMed  Google Scholar 

  61. Nishimura T, Kohara M, Izumi K, Kasama Y, Hirata Y, Huang Y, Shuda M, Mukaidani C, Takano T, Tokunaga Y (2009) Hepatitis C virus impairs P53 via persistent over-expression of 3β-hydroxysterol δ24-reductase. J Biol Chem 284(52):36442–36452. https://doi.org/10.1074/jbc.M109.043232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375

    CAS  PubMed  Google Scholar 

  63. Pallast S, Arai K, Wang X, Lo EH, Van Leyen K (2009) 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J Neurochem 111:882–889

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Paracha UZ, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhouri G, Qadri I (2013) Oxidative stress and hepatitis C virus. Virol J 10:251

    PubMed  PubMed Central  Google Scholar 

  65. Petit J-M, Minello A, Duvillard L, Jooste V, Monier S, Texier V, Bour J-B, Poussier A, Gambert P, Verges B (2007) Cell surface expression of LDL receptor in chronic hepatitis C: correlation with viral load. Am J Physiol Endocrinol Metab 293:E416–E420

    CAS  PubMed  Google Scholar 

  66. Rehermann B, Nascimbeni M (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5:215

    CAS  PubMed  Google Scholar 

  67. Reyes GR (2002) The nonstructural NS5A protein of hepatitis C virus: an expanding, multifunctional role in enhancing hepatitis C virus pathogenesis. J Biomed Sci 9:187–197

    CAS  PubMed  Google Scholar 

  68. Robinson LC, Marchant JS (2008) Enhanced Ca 2+ leak from ER Ca 2+ stores induced by hepatitis C NS5A protein. Biochem Biophys Res Commun 368:593–599

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Saito M, Kohara M, Tsukiyama-Kohara K (2012) Hepatitis C virus promotes expression of the 3β-hydroxysterol δ24-reductase through Sp1. J Med Virol 84:733–746

    CAS  PubMed  Google Scholar 

  70. Santos CXC, Tanaka LY, Wosniak J Jr, Laurindo FRM (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    CAS  PubMed  Google Scholar 

  71. Seeff LB (2002) Natural history of chronic hepatitis C. Hepatology 36:S35–S46

    PubMed  Google Scholar 

  72. Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW (2002) Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression. Am J Pathol 160:641–654

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shao R-X, Hoshida Y, Otsuka M, Kato N, Tateishi R, Teratani T, Shiina S, Taniguchi H, Moriyama M, Kawabe T (2005) Hepatic gene expression profiles associated with fibrosis progression and hepatocarcinogenesis in hepatitis C patients. World J Gastroenterol 11:1995

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith MW, Yue ZN, Korth MJ, Do HA, Boix L, Fausto N, Bruix J, Carithers RL, Katze MG (2003) Hepatitis C virus and liver disease: global transcriptional profiling and identification of potential markers. Hepatology 38:1458–1467

    CAS  PubMed  Google Scholar 

  75. Smith MW, Walters K-A, Korth MJ, Fitzgibbon M, Proll S, Thompson JC, Yeh MM, Shuhart MC, Furlong JC, Cox PP, Thomas DL, Phillips JD, Kushner JP, Fausto N, Carithers RL, Katze MG (2006) Gene expression patterns that correlate with hepatitis C and early progression to fibrosis in liver transplant recipients. Gastroenterology 130:179–187

    CAS  PubMed  Google Scholar 

  76. Tajima S, Ikeda Y, Sawada K, Yamano N, Horinouchi Y, Kihira Y, Ishizawa K, Izawa-Ishizawa Y, Kawazoe K, Tomita S (2011) Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am J Physiol Endocrinol Metab 302:E77–E86

    PubMed  Google Scholar 

  77. Tessier M, Woodgett JR (2006) Serum and glucocorticoid-regulated protein kinases: variations on a theme. J Cell Biochem 98:1391–1407

    CAS  PubMed  Google Scholar 

  78. Tong W-Y, Nagano-Fujii M, Hidajat R, Deng L, Takigawa Y, Hotta H (2002) Physical interaction between hepatitis C virus NS4B protein and CREB-RP/ATF6β. Biochem Biophys Res Commun 299:366–372

    CAS  PubMed  Google Scholar 

  79. Vendemiale G, Grattagliano I, Portincasa P, Serviddio G, Palasciamo G, Altomare E (2001) Oxidative stress in symptom-free HCV carriers: relation with ALT flare-up. Europ J Clin Investig 31:54–63

    CAS  Google Scholar 

  80. Wang T, Weinman SA (2006) Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J Gastroenterol Hepatol 21:S34–S37

    CAS  PubMed  Google Scholar 

  81. Waris G, Tardif KD, Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-κB and STAT-3. Biochem Pharmacol 64:1425–1430

    CAS  PubMed  Google Scholar 

  82. Xu X-M, Yuan G-J, Deng J-J, Guo H-T, Xiang M, Yang F, Ge W, Chen S-Y (2012) Inhibition of 12-lipoxygenase reduces proliferation and induces apoptosis of hepatocellular carcinoma cells in vitro and in vivo. Hepatobiliary Pancreat Dis Int 11:193–202

    CAS  PubMed  Google Scholar 

  83. Yang M, Luna L, Sørbø JG, Alseth I, Johansen RF, Backe PH, Danbolt NC, Eide L, Bjørås M (2014) Human OXR1 maintains mitochondrial DNA integrity and counteracts hydrogen peroxide-induced oxidative stress by regulating antioxidant pathways involving p21. Free Radic Biol Med 77:41–48

    CAS  PubMed  Google Scholar 

  84. Yang M, Lin X, Rowe A, Rognes T, Eide L, Bjørås M (2015) Transcriptome analysis of human OXR1 depleted cells reveals its role in regulating the p53 signaling pathway. Sci Rep 5:17409

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoon SY, Kim J-M, Oh J-H, Jeon Y-J, Lee D-S, Kim JH, Choi JY, Ahn BM, Kim S, Yoo H-S (2006) Gene expression profiling of human HBV-and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. Int J Oncol 29:315–327

    PubMed  Google Scholar 

  86. Zein NN (2000) Clinical Significance of Hepatitis C Virus Genotypes. Clin Microbiol Rev 13:223–235

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ghais-a-Nabi, Dr. Bilal Nasir, and Dr. Arsalan Raja from Lahore General Hospital for their assistance in collecting data.

Author information

Authors and Affiliations

Authors

Contributions

MI and MS conceived the study, participated in its design and coordination, and gave a critical perspective on the writing of the manuscript. MS performed the gene expression profile and analyzed the results. AMB, SMR, AR, SA, and IA participated in the analysis of results and manuscript writing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Shahid.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Handling Editor: Ioly Kotta-Loizou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, M., Idrees, M., Butt, A.M. et al. Blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue injury in chronic hepatitis C patients. Arch Virol 165, 809–822 (2020). https://doi.org/10.1007/s00705-020-04564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04564-z

Navigation