Skip to main content

Advertisement

Log in

Complete genome sequencing and genetic analysis of a Japanese porcine torovirus strain detected in swine feces

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We sequenced the complete genome of a porcine torovirus (PToV) strain from Japan for the first time. Whole-genome analysis revealed that this strain (Iba/2018) has a mosaic sequence composed of at least three genome backgrounds, related to US, Chinese and German PToV strains. Clear recombination breakpoints were detected in the M and HE coding regions. A similarity plot and structural analysis demonstrated that the HE coding region exhibits the highest diversity, and the most sequence variation was found in the lectin domain. PToVs were divided into two lineages in the HE region, whereas clear lineages were not found in other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Zhou Y, Chen L, Zhu L, Xu Z (2013) Molecular detection of porcine torovirus in piglets with diarrhea in southwest China. SciWorldJ 26(2013):984282. https://doi.org/10.1155/2013/984282.eCollection2013

    Article  Google Scholar 

  2. Hu ZM, Yang YL, Xu LD, Wang B, Qin P, Huang YW (2019) Porcine torovirus (PToV)—a brief review of etiology, diagnostic assays and current epidemiology. Front Vet Sci 18(6):120. https://doi.org/10.3389/fvets.2019.00120

    Article  Google Scholar 

  3. Kroneman A, Cornelissen LA, Horzinek MC, de Groot RJ, Egberink HF (1998) Identification and characterization of a porcine torovirus. J Virol 72:3507–3511

    Article  CAS  Google Scholar 

  4. Pignatelli J, Jimenez M, Luque J, Rejas MT, Lavazza A, Rodriguez D (2009) Molecular characterization of a new PToV strain. Evolutionary implications. Virus Res 143:33–43. https://doi.org/10.1016/j.virusres.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  5. Shin DJ, Park SI, Jeong YJ, Hosmillo M, Kim HH, Kim HJ, Kwon HJ, Kang MI, Park SJ, Cho KO (2010) Detection and molecular characterization of porcine toroviruses in Korea. Arch Virol 155:417–422. https://doi.org/10.1007/s00705-010-0595-2

    Article  CAS  PubMed  Google Scholar 

  6. Pignatelli J, Grau-Roma L, Jiménez M, Segalés J, Rodríguez D (2010) Longitudinal serological and virological study on porcine torovirus (PToV) in piglets from Spanish farms. Vet Microbiol 146:260–268. https://doi.org/10.1016/j.vetmic.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  7. Alonso-Padilla J, Pignatelli J, Simon-Grifé M, Plazuelo S, Casal J, Rodríguez D (2012) Seroprevalence of porcine torovirus (PToV) in Spanish farms. BMC Res Notes 5(5):675. https://doi.org/10.1186/s13104-019-4244-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou L, Wei H, Zhou Y, Xu Z, Zhu L, Horne J (2014) Molecular epidemiology of porcine torovirus (PToV) in Sichuan Province, China: 2011–2013. Virol J 5(11):106. https://doi.org/10.1186/1743-422X-11-106

    Article  Google Scholar 

  9. Sun H, Lan D, Lu L, Chen M, Wang C, Hua X (2014) Molecular characterization and phylogenetic analysis of the genome of porcine torovirus. Arch Virol 159:773–778. https://doi.org/10.1007/s00705-013-1861-x

    Article  CAS  PubMed  Google Scholar 

  10. Anbalagan S, Peterson J, Wassman B, Elston J, Schwartz K (2014) Genome sequence of torovirus identified from a pig with porcine epidemic diarrhea virus from the United States. Genome Announc 2(6):e01291–14

    Article  Google Scholar 

  11. Smits SL, Snijder EJ, de Groot RJ (2006) Characterization of a torovirus main proteinase. J Virol 80:4157–4167. https://doi.org/10.1128/JVI.80.8.4157-4167.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snijder EJ, Horzinek MC, Spaan WJ (1990) A 3′-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication. J Virol 64:331–338

    Article  CAS  Google Scholar 

  13. Cong Y, Zarlenga DS, Richt JA, Wang X, Wang Y, Suo S, Wang J, Ren Y, Ren X (2013) Evolution and homologous recombination of the hemagglutinin-esterase gene sequences from porcine torovirus. Virus Genes 47:66–74. https://doi.org/10.1007/s11262-013-0926-y

    Article  CAS  PubMed  Google Scholar 

  14. Ito M, Tsuchiaka S, Naoi Y, Otomaru K, Sato M, Masuda T, Haga K, Oka T, Yamasato H, Omatsu T, Sugimura S, Aoki H, Furuya T, Katayama Y, Oba M, Shirai J, Katayama K, Mizutani T, Nagai M (2016) Whole genome analysis of Japanese bovine toroviruses reveals natural recombination between porcine and bovine toroviruses. Infect Genet Evol 38:90–95. https://doi.org/10.1016/j.meegid.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  15. Smits SL, Lavazza A, Matiz K, Horzinek MC, Koopmans MP, de Groot RJ (2003) Phylogenetic and evolutionary relationships among torovirus field variants: evidence for multiple intertypic recombination events. J Virol 77:9567–9577. https://doi.org/10.1128/jvi.77.17.9567-9577.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagai M, Omatsu T, Aoki H, Otomaru K, Uto T, Koizumi M, Minami-Fukuda F, Takai H, Murakami T, Masuda T, Yamasato H, Shiokawa M, Tsuchiaka S, Naoi Y, Sano K, Okazaki S, Katayama Y, Oba M, Furuya T, Shirai J, Mizutani T (2015) Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus. Arch Virol 160:2491–2501. https://doi.org/10.1007/s00705-015-2543-7

    Article  CAS  PubMed  Google Scholar 

  17. Oka T, Doan YH, Shimoike T, Haga K, Takizawa T (2017) First complete genome sequences of genogroup V, genotype 3 porcine sapoviruses: common 5′-terminal genomic feature of sapoviruses. Virus Genes 53:848–855. https://doi.org/10.1007/s11262-017-1481-8

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  19. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160

    Article  CAS  Google Scholar 

  20. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463. https://doi.org/10.1093/bioinformatics/btq467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langereis MA, Zeng Q, Gerwig GJ, Frey B, von Itzstein M, Kamerling JP, de Groot RJ, Huizinga EG (2009) Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases. Proc Natl Acad Sci USA 106:15897–15902. https://doi.org/10.1073/pnas.0904266106

    Article  PubMed  Google Scholar 

  23. Smits SL, Gerwig GJ, van Vliet AL, Lissenberg A, Briza P, Kamerling JP, Vlasak R, de Groot RJ (2005) Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J Biol Chem 280:6933–6941. https://doi.org/10.1074/jbc.M409683200

    Article  CAS  PubMed  Google Scholar 

  24. Pignatelli J, Alonso-Padilla J, Rodríguez D (2013) Lineage specific antigenic differences in porcine torovirus hemagglutinin-esterase (PToV-HE) protein. Vet Res 44:126. https://doi.org/10.1186/1297-9716-44-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsuchiaka S, Naoi Y, Imai R, Masuda T, Ito M, Akagami M, Ouchi Y, Ishii K, Sakaguchi S, Omatsu T, Katayama Y, Oba M, Shirai J, Satani Y, Takashima Y, Taniguchi Y, Takasu M, Madarame H, Sunaga F, Aoki H, Makino S, Mizutani T, Nagai M (2018) Genetic diversity and recombination of enterovirus G strains in Japanese pigs: high prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population. PLoS One 13(1):e0190819. https://doi.org/10.1371/journal.pone.0190819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Imai R, Nagai M, Oba M, Sakaguchi S, Ujike M, Kimura R, Kida M, Masuda T, Kuroda M, Wen R, Li K, Katayama Y, Naoi Y, Tsuchiaka S, Omatsu T, Yamazato H, Makino S, Mizutani T (2019) A novel defective recombinant porcine enterovirus G virus carrying a porcine torovirus papain-like cysteine protease gene and a putative anti-apoptosis gene in place of viral structural protein genes. Infect Genet Evol 75:103975. https://doi.org/10.1016/j.meegid.2019.103975

    Article  CAS  PubMed  Google Scholar 

  27. Simmonds P (2006) Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. J Virol 80:11124–11140. https://doi.org/10.1128/JVI.01076-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (grant numbers 15K07718 and 18K05977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nagai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This study did not involve any human participants or animals.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 27 kb)

Supplementary Fig. 1

(A) Nucleotide sequence alignment of the M and HE coding regions of PToV/NPL/USA/2014, PToV/Iba/JPN/2018, and PToV/L00926/DEU/2014. (B) Recombination breakpoint analysis of PToV/NPL/USA/2014 vs. PToV/L00926/DEU/2014 (yellow curve), PToV/NPL/USA/2014 vs. PToV/Iba/JPN/2018 (blue curve), and PToV/L00926/DEU/2014 vs. PToV/Iba/JPN/2018 (purple curve) (C) Partial genome structure of torovirus. (PPTX 1174 kb)

Supplementary Fig. 2

Phylogenetic analysis based on the amino acid sequences of papain-like cysteine protease of Iba/2018 (denoted by ● and boldface) and those of previously reported toroviruses and enterovirus G strains obtained from the DDBJ/EMBL/GenBank databases. The phylogenetic tree was constructed by the maximum-likelihood method in MEGA7.0 with the best-fit model (JJT+I), and bootstrap values above 70 (1000 replicates) are shown. The bar represents amino acid substitutions per site (PPTX 45 kb)

Supplementary Fig. 3

RT-PCR analysis of Iba/2018. Specific primers were designed from the sequence obtained by the de novo assembly algorithm in CLC Genomics Workbench (PPTX 10395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, Y., Kashima, Y., Sunaga, F. et al. Complete genome sequencing and genetic analysis of a Japanese porcine torovirus strain detected in swine feces. Arch Virol 165, 471–477 (2020). https://doi.org/10.1007/s00705-019-04514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04514-4

Navigation