Skip to main content
Log in

Status of the current vitivirus taxonomy

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Since the establishment of the genus Vitivirus, several additional viruses have been sequenced and proposed to represent new species of this genus. Currently, the International Committee on Taxonomy of Viruses recognizes 15 vitivirus species. The report of new vitiviruses that fail to completely adhere to the species demarcation criteria, the incorporation of non-vitivirus grapevine viruses in the unofficial “naming system”, and the existence of non-grapevine vitiviruses lead to inconsistencies in classification. In this report, we give a brief overview of vitiviruses and use currently available information to clarify the present status of the vitivirus taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Martelli GP, Minafra A, Saldarelli P (1997) Vitivirus, a new genus of plant viruses. Arch Virol 142(9):1929–1932

    CAS  PubMed  Google Scholar 

  2. Boscia D, Savino V, Minafra A et al (1993) Properties of a filamentous virus isolated from grapevines affected by corky bark. Arch Virol 130:109–120. https://doi.org/10.1007/BF01319000

    Article  CAS  PubMed  Google Scholar 

  3. Conti M, Milne RG, Luisoni E, Boccardo G (1980) A closterovirus from a stem-pitting-diseased grapevine. Phytopathology 70:394–399. https://doi.org/10.1094/Phyto-70-394

    Article  Google Scholar 

  4. Diaz-Lara A, Golino D, Al Rwahnih M (2018) Genomic characterization of grapevine virus J, a novel virus identified in grapevine. Arch Virol 163:1965–1967. https://doi.org/10.1007/s00705-018-3793-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Masri S, Rast H, Johnson R, Monette P (2006) Grapevine virus C and grapevine leaf roll associated virus 2 are serologically related and appear to be the same virus. Vitis 45(2):93

    CAS  Google Scholar 

  6. Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401. https://doi.org/10.1016/j.virol.2009.02.028

    Article  CAS  PubMed  Google Scholar 

  7. Jo Y, Song M-K, Choi H et al (2017) Genome sequence of grapevine virus T, a novel foveavirus infecting grapevine. Genome Announc 5(37):e00995-17. https://doi.org/10.1128/genomeA.00995-17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jo Y, Song M-K, Choi H et al (2017) Genome sequence of grapevine virus K, a novel vitivirus infecting grapevine. Genome Announc 5(37):e00994-17. https://doi.org/10.1128/genomeA.00994-17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alabi OJ, McBride S, Appel DN et al (2019) Grapevine virus M, a novel vitivirus discovered in the American hybrid bunch grape cultivar Blanc du Bois in Texas. Arch Virol 164:1739–1741. https://doi.org/10.1007/s00705-019-04252-7

    Article  CAS  PubMed  Google Scholar 

  10. Debat HJ, Zavallo D, Brisbane RS et al (2019) Grapevine virus L: A novel vitivirus in grapevine. Eur J Plant Pathol 155(1):319–328. https://doi.org/10.1007/s10658-019-01727-w

    Article  CAS  Google Scholar 

  11. Adams MJ, Antoniw JF, Bar-Joseph M et al (2004) Virology Division News: the new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol 149:1045–1060. https://doi.org/10.1007/s00705-004-0304-0

    Article  CAS  PubMed  Google Scholar 

  12. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9(9):e108277. https://doi.org/10.1371/journal.pone.0108277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin DP, Murrell B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marais A, Faure C, Candresse T (2016) New insights into Asian Prunus viruses in the light of NGS-based full genome sequencing. PLoS One 11(1):e0146420. https://doi.org/10.1371/journal.pone.0146420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martelli GP, Adams MJ, Kreuze JF, Dolja VV (2007) Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol 45:73–100. https://doi.org/10.1146/annurev.phyto.45.062806.094401

    Article  CAS  PubMed  Google Scholar 

  18. Lee D-H, Jin S-G, Cai S et al (2005) Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 280:39448–39459. https://doi.org/10.1074/jbc.M509881200

    Article  CAS  PubMed  Google Scholar 

  19. Dolja VV, Meng B, Martelli GP (2017) Evolutionary aspects of grapevine virology. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, pp 659–688

    Chapter  Google Scholar 

  20. Haviv S, Moskovitz Y, Mawassi M (2012) The ORF3-encoded proteins of vitiviruses GVA and GVB induce tubule-like and punctate structures during virus infection and localize to the plasmodesmata. Virus Res 163:291–301. https://doi.org/10.1016/j.virusres.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  21. Satyanarayana T, Gowda S, Ayllón MA et al (2002) The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76:473–483. https://doi.org/10.1128/JVI.76.2.473-483.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruiz-Ruiz S, Soler N, Sánchez-Navarro J et al (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. MPMI 26:306–318. https://doi.org/10.1094/MPMI-08-12-0201-R

    Article  CAS  PubMed  Google Scholar 

  23. Deng X-G, Peng X-J, Zhu F et al (2015) A critical domain of sweet potato chlorotic fleck virus nucleotide-binding protein (NaBp) for RNA silencing suppression, nuclear localization and viral pathogenesis. Mol Plant Pathol 16:365–375. https://doi.org/10.1111/mpp.12186

    Article  CAS  PubMed  Google Scholar 

  24. Herrbach E, Alliaume A, Prator CA et al (2017) Vector transmission of grapevine leafroll-associated viruses. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, pp 483–503

    Chapter  Google Scholar 

  25. Tzanetakis IE, Postman JD, Martin RR (2007) Identification, detection and transmission of a new vitivirus from Mentha. Arch Virol 152:2027–2033. https://doi.org/10.1007/s00705-007-1030-1

    Article  CAS  PubMed  Google Scholar 

  26. Bem F, Murant AF (1979) Transmission and differentiation of six viruses infecting hogweed (Heracleum sphondylium) in Scotland. Ann Appl Biol 92:237–242. https://doi.org/10.1111/j.1744-7348.1979.tb03869.x

    Article  Google Scholar 

  27. Murant AF, Raccah B, Pirone TP (1988) Transmission by vectors. In: Milne RG (ed) The plant viruses: the filamentous plant viruses. Springer US, Boston, pp 237–273

    Chapter  Google Scholar 

  28. Bertin S, Cavalieri V, Gribaudo I et al (2016) Transmission of grapevine virus A and grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) nymphs from plants with mixed infections. J Econ Entomol 109:1504–1511. https://doi.org/10.1093/jee/tow120

    Article  CAS  PubMed  Google Scholar 

  29. Blaisdell G, Zhang S, Daane K, Almeida P (2012) Patterns of virus transmission from hosts with mixed infections. In: Proceedings of the 17th congress of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), Davis, 7-–14 October 2012. Foundation Plant Services, pp 178–179

  30. Hommay G, Komar V, Lemaire O, Herrbach E (2008) Grapevine virus A transmission by larvae of Parthenolecanium corni. Eur J Plant Pathol 121:185–188. https://doi.org/10.1007/s10658-007-9244-3

    Article  Google Scholar 

  31. Le Maguet J, Beuve M, Herrbach E, Lemaire O (2012) Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. Phytopathology 102:717–723. https://doi.org/10.1094/PHYTO-10-11-0289

    Article  PubMed  Google Scholar 

  32. La Notte P, Buzkan N, Choueiri E et al (1997) Acquisition and transmission of grapevine virus a by the mealybug Pseudococcus longispinus. J Plant Pathol 79:79–85

    Google Scholar 

  33. Rowhani A, Daubert S, Arnold K et al (2018) Synergy between grapevine vitiviruses and grapevine leafroll viruses. Eur J Plant Pathol 151:919–925. https://doi.org/10.1007/s10658-018-1426-7

    Article  Google Scholar 

  34. Alliaume A, Reinbold C, Erhardt M et al (2018) Virus preparations from the mixed-infected P70 Pinot Noir accession exhibit GLRaV-1/GVA ‘end-to-end’ particles. Arch Virol 163(11):3149–3154. https://doi.org/10.1007/s00705-018-3995-3

    Article  CAS  PubMed  Google Scholar 

  35. Martelli GP (2014) Directory of virus and virus-like diseases of the grapevine and their agents. J Plant Pathol 96:1–136. https://doi.org/10.4454/JPP.V96I1SUP

    Article  Google Scholar 

  36. Minafra A, Mawassi M, Goszczynski D, Saldarelli P (2017) Grapevine vitiviruses. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, pp 229–256

    Chapter  Google Scholar 

  37. Chevalier S, Greif C, Clauzel J-M et al (1995) Use of an immunocapture-polymerase chain reaction procedure for the detection of grapevine virus A in Kober stem grooving-infected grapevines. J Phytopathol 143:369–373. https://doi.org/10.1111/j.1439-0434.1995.tb00277.x

    Article  CAS  Google Scholar 

  38. Credi R (1997) Characterization of grapevine rugose wood disease sources from Italy. Plant Dis 81:1288–1292. https://doi.org/10.1094/PDIS.1997.81.11.1288

    Article  CAS  PubMed  Google Scholar 

  39. Bonavia M, Digiaro M, Boscia D et al (1996) Studies on “corky rugose wood” of grapevine and on the diagnosis of grapevine virus B. Vitis 35:53–58

    Google Scholar 

  40. Rosa C, Jimenez JF, Margaria P, Rowhani A (2011) Symptomatology and effects of viruses associated with rugose wood complex on growth of four different rootstocks. Am J Enol Vitic 62(2):207–213. https://doi.org/10.5344/ajev.2011.10104

    Article  Google Scholar 

  41. Blouin AG, Chavan RR, Pearson MN et al (2012) Detection and characterisation of two novel vitiviruses infecting Actinidia. Arch Virol 157:713–722. https://doi.org/10.1007/s00705-011-1219-1

    Article  CAS  PubMed  Google Scholar 

  42. Sciancalepore A, Pio Ribeiro G, Turturo C et al (2006) Molecular variability of GVA and GVB coat protein genes in naturally infected grapevine accessions. In: Extended abstracts of the 15th meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), Stellenbosch, 3–8 April 2006. South African Society for Enology and Viticulture, pp 81–82

  43. Blouin AG, Chooi KM, Warren B et al (2018) Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand. Arch Virol 163(5):1371–1374. https://doi.org/10.1007/s00705-018-3738-5

    Article  CAS  PubMed  Google Scholar 

  44. Diaz-Lara A, Brisbane RS, Aram K et al (2019) Detection of new vitiviruses infecting grapevine in California. Arch Virol 164(10):2573–2580. https://doi.org/10.1007/s00705-019-04355-1

    Article  CAS  PubMed  Google Scholar 

  45. Abou-Ghanem N, Saldarelli P, Minafra A et al (1997) Properties of Grapevine virus D, a novel putative Trichovirus. J Plant Pathol 79:15–25

    Google Scholar 

  46. Nakaune R, Toda S, Mochizuki M, Nakano M (2008) Identification and characterization of a new vitivirus from grapevine. Arch Virol 153:1827. https://doi.org/10.1007/s00705-008-0188-5

    Article  CAS  PubMed  Google Scholar 

  47. Blouin AG, Keenan S, Napier KR et al (2018) Identification of a novel vitivirus from grapevines in New Zealand. Arch Virol 163(1):281–284. https://doi.org/10.1007/s00705-017-3581-0

    Article  CAS  PubMed  Google Scholar 

  48. Candresse T, Theil S, Faure C, Marais A (2018) Determination of the complete genomic sequence of grapevine virus H, a novel vitivirus infecting grapevine. Arch Virol 163(1):277–280. https://doi.org/10.1007/s00705-017-3587-7

    Article  CAS  PubMed  Google Scholar 

  49. Oliveira LM, Orílio AF, Inoue-Nagata AK et al (2017) A novel vitivirus-like sequence found in Arracacia xanthorrhiza plants by high throughput sequencing. Arch Virol 162:2141–2144. https://doi.org/10.1007/s00705-017-3326-0

    Article  CAS  PubMed  Google Scholar 

  50. Hassan M, Shahid MS, Tzanetakis IE (2018) Molecular characterization and detection of a novel vitivirus infecting blackberry. Arch Virol 163:2889–2893. https://doi.org/10.1007/s00705-018-3931-6

    Article  CAS  PubMed  Google Scholar 

  51. Al Rwahnih M, Sudarshana MR, Uyemoto JK, Rowhani A (2012) Complete genome sequence of a novel vitivirus isolated from grapevine. J Virol 86(17):9545. https://doi.org/10.1128/JVI.01444-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is based upon work from COST Action FA1407 (DIVAS), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Maree.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Sead Sabanadzovic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maree, H.J., Blouin, A.G., Diaz-Lara, A. et al. Status of the current vitivirus taxonomy. Arch Virol 165, 451–458 (2020). https://doi.org/10.1007/s00705-019-04500-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04500-w

Navigation