Skip to main content

Advertisement

Log in

Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A pathogen of significance in the aquaculture sector, the Gram-negative marine bacterium Vibrio parahaemolyticus causes gastroenteritis associated with consumption of improperly prepared seafood. This bacterium can be controlled using lytic bacteriophages as an alternative to antibiotics. ϕVP-1 is a lytic phage of V. parahaemolyticus that was isolated from an aquafarm water sample with the aim of assessing its potential as a bio-control agent and determining its physicochemical properties and genomic sequence. Morphological analysis by transmission electron microscopy and phylogenetic analysis based on the large terminase subunit gene showed that this phage belongs to the family Myoviridae. It could infect multiple-drug-resistant (MDR) V. parahaemolyticus and V. alginolyticus strains of mangrove and seafood origin. With a maximum adsorption time of 30 min, ϕVP-1 has a short latent period of 10 min with burst size of 44 particles/cell. Whole-genome sequencing was done using the Illumina platform, and annotation was done using GeneMarkS and Prodigal. The 150,764bp genome with an overall G+C content of 41.84% had 203 putative protein-encoding open reading frames, one tRNA gene, and 66 predicted promoters. A number of putative DNA replication and regulation, DNA packaging and structure, and host lysis genes were identified. Comparison of the ϕVP-1 genome sequence to those of known Vibrio phages indicated little discernible DNA sequence similarity, suggesting that ϕVP-1 is a novel Vibrio phage. Sequence analysis revealed the presence of 64 potential ORFs with a T4-like genomic organization. In silico analysis suggested an obligate lytic life cycle and showed the absence of lysogeny or virulence genes. The complete sequence of ϕVP-1 was annotated and deposited in the GenBank database (accession no. MH363700). The genetic features of this novel phage suggest that it might be applicable for phage therapy against pathogenic strains of V. parahaemolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DePaola A, Ulaszek J, Kaysner CA, Tenge BJ, Nordstrom JL, Wells J, Gendel SM (2003) Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Appl Environ Microbiol 69(7):3999–4005

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee CT, Chen IT, Yang YT, Ko TP, Huang YT, Huang JY, Lightner DV (2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci 112(34):10798–10803

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Golkar Z, Bagasra O, Pace DG (2014) Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries 8:129–136. https://doi.org/10.3855/jidc.3573

    Article  PubMed  Google Scholar 

  4. Phumkhachorn P, Rattanachaikunsopon P (2010) Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr J Microbiol Res 4(16):1794–1800

    Google Scholar 

  5. Adams MH (1959) Bacteriophages. Wiley, New York

    Google Scholar 

  6. Maniatis T, Fritsch EF, Sambrook J (2000) Molecular cloning: a laboratory manual, vol 545. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  7. Hyman P, Abedon ST (2009) Practical methods for determining phage growth paramenters. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 1. Isolation, characterization and interactions. Humana Press, New York, pp 175–202

    Google Scholar 

  8. Capra ML, Quiberoni ADL, Ackermann HW, Moineau S, Reinheimer JA (2006) Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J Dairy Sci 89(7):2414–2423

    CAS  PubMed  Google Scholar 

  9. Durmaz EN, Higgins DL, Klaenhammer TR (1992) Molecular characterization of a second abortive phage resistance gene present in Lactococcus lactis subsp. Lactis ME2. J Bacteriol 174(22):7463–7469

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  11. Khoa HV, Midorikawa Y, Uchino T, Nakai T, Kato G, Kondo H, Sano M (2017) Complete genome sequence of the lytic giant bacteriophage pT24 infecting Tenacibaculum spp., isolated from a shrimp culture pond. Genome Announc 5(27):e00081-17

    PubMed  PubMed Central  Google Scholar 

  12. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11(1):119

    Google Scholar 

  14. Marchler-Bauer A et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203

    CAS  PubMed  Google Scholar 

  15. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2008) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120

    PubMed  PubMed Central  Google Scholar 

  16. Letunic I, Doerks T, Bork P (2014) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(D1):D257–D260

    PubMed  PubMed Central  Google Scholar 

  17. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653

    PubMed  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28(5):614–618

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37(Suppl 1):D443–D447

    CAS  PubMed  Google Scholar 

  23. Chen L, Xiong Z, Sun L, Yang J, Jin Q (2011) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40(D1):D641–D645

    PubMed  PubMed Central  Google Scholar 

  24. Kokkari C, Sarropoulou E, Bastias R, Mandalakis M, Katharios P (2018) Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus. Arch Microbiol 13:1–12

    Google Scholar 

  25. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Burrett FF, Melton DM, Beachey EH (1988) Adherence of coagulase negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. J Clin Microbiol 22(1):996–1006

    Google Scholar 

  26. Stepanovic S, Vukovic D, Hola V, Bonaventura GD, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis 115(8):891–899

    PubMed  Google Scholar 

  27. Meng X, Shi Y, Ji W, Meng X, Zhang J, Wang H, Yan Y (2011) Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen, Streptococcus suis. Appl Environ Microbiol 77:8272–8279

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rao BM, Lalitha KV (2015) Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture 437:146–154

    Google Scholar 

  29. Alagappan KM, Deivasigamani B, Somasundaram ST, Kumaran S (2010) Occurrence of Vibrio parahaemolyticus and its specific phages from shrimp ponds in East Coast of India. Curr Microbiol 61(4):235–240

    CAS  PubMed  Google Scholar 

  30. Stalin N, Srinivasan P (2016) Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East Coast of India. Biologicals 44(6):526–533

    CAS  PubMed  Google Scholar 

  31. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 13:1763–1786. https://doi.org/10.3390/s130201763

    Article  CAS  Google Scholar 

  32. Peltomaa R, Lopez-Perolio I, Benito-Pena E, Barderas R, Moreno-Bondi MC (2016) Application of bacteriophages in sensor development. Anal Bioanal Chem 408:1805–1828. https://doi.org/10.1007/s00216-015-9087-2

    Article  CAS  PubMed  Google Scholar 

  33. Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment, and injection. In: Drake JW, Kreuzer KN, Mosig G, Hall DH, Eiserling FA et al (eds) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, pp 347–356

    Google Scholar 

  34. Wang N (2006) Lysis timing and bacteriophage fitness. Genetics 172(1):17–26

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kerby GP, Godwy RA, Dillon ES, Dillon ML, Csáky TZ, Sharp DG, Beard JW (1949) Purification, pH stability and sedimentation properties of the T7 bacteriophage of Escherichia coli. J Immunol 63:93–107

    CAS  PubMed  Google Scholar 

  36. Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. WFCC Newslett 38:35–40

    Google Scholar 

  37. Feng YY, Ong SL, Hu JY, Tan XL, Ng WJ (2003) Effects of pH and temperature on the survival of coliphages MS2 and Qbeta. J Ind Microbiol Biotechnol 30:549–552

    CAS  PubMed  Google Scholar 

  38. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56(3):191–200

    Google Scholar 

  39. Lal TM, Sano M, Ransangan J (2016) Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol 56(8):872–888

    CAS  PubMed  Google Scholar 

  40. Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, Zhou X (2018) Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int J Food Microbiol 275:24–33

    PubMed  Google Scholar 

  41. Wong HC, Wang TY, Yang CW, Tang CT, Ying C, Wang CH, Chang WH (2018) Characterization of a lytic vibriophage VP06 of Vibrio parahaemolyticus. Res Microbiol

  42. Anany H, Lingohr EJ, Villegas A, Ackermann HW, She YM, Griffiths MW, Kropinski AM (2011) A Shigella boydii bacteriophage which resembles Salmonella phage ViI. Virol J 8(1):242

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kato M, Frick DN, Lee J, Tabor S, Richardson CC, Ellenberger T (2001) A complex of the bacteriophage T7 primase-helicase and DNA polymerase directs primer utilization. J Biol Chem 276(24):21809–21820

    CAS  PubMed  Google Scholar 

  44. Yang H, Ma Y, Wang Y, Yang H, Shen W, Chen X (2014) Transcription regulation mechanisms of bacteriophages: recent advances and future prospects. Bioengineered 5(5):300–304

    PubMed  PubMed Central  Google Scholar 

  45. Kondabagil KR, Rao VB (2006) A critical coiled coil motif in the small terminase, gp16, from bacteriophage T4: insights into DNA packaging initiation and assembly of packaging motor. J Mol Biol 358(1):67–82

    CAS  PubMed  Google Scholar 

  46. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ (2010) Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci 107(47):20287–20292

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee HS, Choi S, Shin H, Lee JH, Choi SH (2014) Vibrio vulnificus bacteriophage SSP002 as a possible biocontrol agent. Appl Environ Microbiol 80(2):515–524

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kao SH, McClain WH (1980) Baseplate protein of bacteriophage T4 with both structural and lytic functions. J Virol 34:95–103

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang IN, Smith DL, Young R (2000) Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54(1):799–825

    CAS  PubMed  Google Scholar 

  50. Oechslin F (2018) Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10(7):351

    PubMed Central  Google Scholar 

  51. Brzozowska E, Pyra A, Pawlik K, Górska S, Gamian A (2018) The antibiofilm activity of dual-function tail tubular protein B from KP32 phage

  52. Adams MH, Park BH (1956) An enzyme produced by a phage–host cell system. 11. The properties of the polysaccharide depolymerase. Virology 2:719–736

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, Cochin University of Science and Technology, for providing all facilities for research. The first author acknowledges DST-PURSE for a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita G. Bhat.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matamp, N., Bhat, S.G. Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch Virol 165, 387–396 (2020). https://doi.org/10.1007/s00705-019-04493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04493-6

Navigation