Skip to main content
Log in

TAC1, an unclassified bacteriophage of the family Myoviridae infecting Acinetobacter baumannii with a large burst size and a short latent period

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bacteriophage TAC1 was isolated using a clinical isolate of Acinetobacter baumannii as the host. It showed stability over wide pH and temperature range and has exhibited in vitro antibacterial activity when applied at an MOI of 1. It demonstrated a broad intraspecies host range and infected 66% of the isolates tested. It has produced 454 virions from a single bacterium with a short latent period of 15 minutes. TAC1 has a linear dsDNA genome with a length of 101.77 kb and 37.5% GC content. The genome encodes 161 proteins and 13 putative tRNAs. Whole-genome sequence comparisons using BLASTn and phylogenetic analysis showed that TAC1 is related to unclassified bacteriophages of the family Myoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The genome sequence has been submitted to the NCBI GenBank database (accession no. MK170160).

References

  1. Frère J-M, Rigali S (2016) The alarming increase in antibiotic-resistant bacteria. Drug Target Rev 3:26–30

    Google Scholar 

  2. CLSI (2016) Performance standards for antimicrobial susceptibility testing: 25th informational supplement. In: CLSI document M100-S26 Clinical and Laboratory Standards Institute

  3. Khawaja KA, Rauf M, Abbas Z (2016) A virulent phage JHP against Pseudomonas aeruginosa showed infectivity against multiple genera. J Basic Microbiol 56:1090–1097

    Article  CAS  Google Scholar 

  4. Lin N-T, Chiou P-Y, Chang K-C, Chen L-K, Lai M-J (2010) Isolation and characterization of ϕAB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 161(4):308–314

    Article  CAS  Google Scholar 

  5. Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10(1):1–10. https://doi.org/10.1186/1471-2180-10-131

    Article  CAS  Google Scholar 

  6. Jin J, Li Z-J, Wang S-W, Wang S-M, Huang D-H, Li Y-H, Ma Y-Y, Wang J, Liu F, Chen X-D, Li G-X, Wang X-T, Wang Z-Q, Zhao G-Q (2012) Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates. BMC Microbiol 12:156. https://doi.org/10.1186/1471-2180-12-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abedon ST (2011) Lysis from without. Bacteriophage 1(1):46–49

    Article  Google Scholar 

  8. Chaudhry WN, Haq IU, Andleeb S, Qadri I (2014) Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water. J Basic Microbiol 54(6):531–541

    Article  CAS  Google Scholar 

  9. Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L (2017) Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22(1):38–47.e34

    Article  CAS  Google Scholar 

  10. Bibi Z, Abbas Z, Rehman Su (2016) The phage P. E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci Technol 26(2):181–188

    Article  Google Scholar 

  11. Merabishvili M, Vandenheuvel D, Kropinski AM, Mast J, De Vos D, Verbeken G, Noben J-P, Lavigne R, Vaneechoutte M, Pirnay J-P (2014) Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PLoS One 9(8):e104853. https://doi.org/10.1371/journal.pone.0104853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tabassum R, Shafique M, Khawaja KA, Alvi IA, Rehman Y, Sheik CS, Abbas Z, Rehman Su (2018) Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumoniae. Sci Rep 8(1):17904. https://doi.org/10.1038/s41598-018-36229-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucl Acids Res 29(12):2607–2618

    Article  CAS  Google Scholar 

  14. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  Google Scholar 

  15. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res 31(13):3784–3788

    Article  CAS  Google Scholar 

  16. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6):1102–1104

    Article  CAS  Google Scholar 

  17. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucl Acids Res 44(W1):W54–W57

    Article  CAS  Google Scholar 

  18. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl Acids Res 32(1):11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  Google Scholar 

  19. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D (2011) ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8(1):11–13

    Article  CAS  Google Scholar 

  20. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785

    Article  CAS  Google Scholar 

  21. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  Google Scholar 

  22. Orfanoudaki G, Markaki M, Chatzi K, Tsamardinos I, Economou A (2017) MatureP: prediction of secreted proteins with exclusive information from their mature regions. Sci Rep 7(1):3263. https://doi.org/10.1038/s41598-017-03557-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavigne R, Sun W, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20(5):629–635

    Article  CAS  Google Scholar 

  24. Young R (2013) Phage lysis: do we have the hole story yet? Curr Opin Microbiol 16(6):790–797. https://doi.org/10.1016/j.mib.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  25. Zhou W, Feng Y, Zong Z (2018) Two new lytic bacteriophages of the Myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 9:850

    Article  Google Scholar 

  26. Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37(4):554–571. https://doi.org/10.1111/1574-6976.12006

    Article  CAS  PubMed  Google Scholar 

  27. Garneau JR, Depardieu F, Fortier L-C, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7(1):8292

    Article  Google Scholar 

  28. Liu J, Mushegian A (2004) Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. J Bacteriol 186(13):4369–4375. https://doi.org/10.1128/jb.186.13.4369-4375.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turner D, Ackermann H-W, Kropinski AM, Lavigne R, Sutton JM, Reynolds DM (2017) Comparative analysis of 37 Acinetobacter bacteriophages. Viruses 10(1):5

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Cody S. Sheik, Swenson College of Science and Engineering, University of Minnesota Duluth, USA, for helping us with genome sequencing. We are also very thankful to the Higher Education Commission (HEC) of Pakistan for providing funds (HEC-NRPU-4501) to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

M.A. conducted the majority of the experiments, and Dr. S.R. supervised all experiments and the manuscript write-up. I.A.A. performed the genome analysis, and R.T. helped in characterizing the TAC1 bacteriophage. All authors have reviewed the final version of the manuscript.

Corresponding author

Correspondence to Shafiq Ur Rehman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Chan-Shing Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 315 kb)

Supplementary material 2 (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, M., Alvi, I.A., Tabassum, R. et al. TAC1, an unclassified bacteriophage of the family Myoviridae infecting Acinetobacter baumannii with a large burst size and a short latent period. Arch Virol 165, 419–424 (2020). https://doi.org/10.1007/s00705-019-04483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04483-8

Navigation