Skip to main content
Log in

Coxsackievirus B3 infection induces changes in the expression of numerous piRNAs

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Piwi-interacting RNAs (piRNAs) play pivotal roles in spermatogenesis and are widely distributed among somatic tissues. However, little is known about piRNAs in HeLa cells infected with coxsackievirus B3 (CVB3). In this study, we systematically investigated changes in piRNA expression in HeLa cells infected with CVB3 using high-throughput sequencing technology. piRNA expression profiles in CVB3-infected HeLa cells were examined at 3, 6 and 9 h postinfection (pi). Of the 32,826 piRNAs that were annotated in the NCBI database, 151,571, 89,698 and 76,626 piRNAs were detected in CVB3-infected HeLa cells at 3, 6 and 9 h pi, respectively. Compared with normal cells, 211, 72 and 94 piRNAs were differentially expressed in CVB3-infected HeLa cells at 3, 6 and 9 h pi, respectively. Thirteen piRNAs, including four novel piRNAs, exhibited concurrent changes in CVB3-infected HeLa cells. The changes in the expression of these 13 piRNAs was confirmed in CVB3-infected HeLa cells and 293T cells by stem-loop RT-qPCR at 3, 6 and 9 h pi. The target genes of 13 piRNAs were predicted. The four novel piRNAs were associated with LTR/ERV, LINE/L1 and LTR/ERVK repetitive elements located on different chromosomes. These findings may promote a better understanding of the regulatory mechanism of pathophysiological changes induced by CVB3 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu PP, Mason JWJC (2001) Advances in the understanding of myocarditis. Circulation 104(9):1076–1082

    CAS  PubMed  Google Scholar 

  2. Liu Q, Paroo ZJARoB (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79(1):295–319

    CAS  PubMed  Google Scholar 

  3. Siomi MC, Sato K, Pezic D, Aravin AAJNRMCB (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258

    CAS  PubMed  Google Scholar 

  4. Pillai RS, Chuma SJ (2012) piRNAs and their involvement in male germline development in mice. Dev Growth Differ 54(1):78–92

    CAS  PubMed  Google Scholar 

  5. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202

    PubMed  Google Scholar 

  6. Ernst C, Odom DT, Kutter C (2017) The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 8:1411–1421

    PubMed  PubMed Central  Google Scholar 

  7. Esposito T, Magliocca S, Formicola D, Gianfrancesco F (2011) piR_015520 belongs to Piwi-associated RNAs regulates expression of the human melatonin receptor 1A gene. PLoS One 6(7):e22727–e22734

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Watanabe T, Cheng E, Mei Z, Lin HJGR (2015) Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res 25(3):368–380

    PubMed  PubMed Central  Google Scholar 

  9. Czech B, Munafo M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ (2018) piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet 52:131–157

    CAS  PubMed  Google Scholar 

  10. Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450(7167):304–308

    CAS  PubMed  Google Scholar 

  11. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang G, Hu H, Xue X, Shen S, Gao E, Guo G, Shen X, Zhang X (2013) Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 15(7):563–568

    CAS  PubMed  Google Scholar 

  13. Law PT, Qin H, Ching AK, Lai KP, Co NN, He M, Lung RW, Chan AW, Chan TF, Wong N (2013) Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol 58(6):1165–1173

    CAS  PubMed  Google Scholar 

  14. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DPJN (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455(7217):1193–1197

    CAS  PubMed  Google Scholar 

  15. Juliano CE, Reich A, Liu N, Götzfried J, Zhong M, Uman S, Reenan RA, Wessel GM, Steele RE, Lin HJPNASUSA (2014) PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci USA 111(1):337–342

    CAS  PubMed  Google Scholar 

  16. Lim RSM, Anand A, Nishimiya-Fujisawa C, Kobayashi S, Kai TJDB (2014) Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev Biol 386(1):237–251

    CAS  PubMed  Google Scholar 

  17. Cong F, Cheung AK, Huang SMJ (2012) Chemical genetics-based target identification in drug discovery. Annu Rev Pharmacol Toxicol 52:57–58

    CAS  PubMed  Google Scholar 

  18. Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2’-O-methylated at their 3’ termini. Nat Struct Mol Biol 14(4):347–348

    CAS  PubMed  Google Scholar 

  19. Ha H, Song J, Wang S, Kapusta A, Feschotte C, Chen KC, Xing J (2014) A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genom 15(1):545–561

    Google Scholar 

  20. Wang K, Liang C, Liu J, Xiao H, Huang S, Xu J, Li FJBB (2014) Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinform 15(1):419

    CAS  Google Scholar 

  21. Love MI, Wolfgang H, Simon AJGB (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550–571

    PubMed  PubMed Central  Google Scholar 

  22. Tim C, Markus K, Robert H, Michael EJNRMCB (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12(3):152–162

    Google Scholar 

  23. Li Z, Wang Z, Xu S, Liang W, Fan W (2017) Proteomic analysis reveals a new benefit of periodic mechanical stress on chondrocytes. Cell Physiol Biochem 44(4):1578–1590

    CAS  PubMed  Google Scholar 

  24. Liu J, Zhang S, Cheng B (2018) Epigenetic roles of PIWI interacting RNAs (piRNAs) in cancer metastasis (review). Oncol Rep 40(5):2423–2434

    CAS  PubMed  Google Scholar 

  25. Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic acids Res 39(15):6596–6607

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S, Lam WL (2015) Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 5:10423–10441

    PubMed  PubMed Central  Google Scholar 

  27. Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF (2017) Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell 169(6):1090–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Busch J, Ralla B, Jung M, Wotschofsky Z, Trujillo-Arribas E, Schwabe P, Kilic E, Fendler A, Jung K (2015) Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res 34:61–72

    PubMed  PubMed Central  Google Scholar 

  29. Martinez VD, Enfield KSS, Rowbotham DA, Lam WL (2016) An atlas of gastric PIWI-interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer 19(2):660–665

    CAS  PubMed  Google Scholar 

  30. Krishnan P, Ghosh S, Graham K, Mackey JR, Kovalchuk O, Damaraju S (2016) Piwi-interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget 7(25):37944–37956

    PubMed  PubMed Central  Google Scholar 

  31. Qu A, Wang W, Yang Y, Zhang X, Dong Y, Zheng G, Wu Q, Zou M, Du L, Wang Y, Wang C (2019) A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res 11:3703–3720

    PubMed  PubMed Central  Google Scholar 

  32. Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230

    CAS  PubMed  Google Scholar 

  33. Krishnan P, Damaraju S (2018) The challenges and opportunities in the clinical application of noncoding RNAs: the road map for miRNAs and piRNAs in cancer diagnostics and prognostics. Int J Genom 2018:5848046–5848064

    Google Scholar 

  34. Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, Giurato G, Santamaria G, Cordella A, Cantarella C, Weisz A (2014) RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget 5(20):9901–9910

    PubMed  PubMed Central  Google Scholar 

  35. Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H, Li QN (2011) piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clinica Chimica Acta Int J Clin Chem 412(17–18):1621–1625

    CAS  Google Scholar 

  36. Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, Yu X, Xiao B, Wang W, Guo J (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44(13):1050–1057

    CAS  PubMed  Google Scholar 

  37. Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z, Guo J (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315(1):12–17

    CAS  PubMed  Google Scholar 

  38. Assumpcao CB, Calcagno DQ, Araujo TM, Santos SE, Santos AK, Riggins GJ, Burbano RR, Assumpcao PP (2015) The role of piRNA and its potential clinical implications in cancer. Epigenomics 7(6):975–984

    CAS  PubMed  Google Scholar 

  39. Imbeault M, Helleboid PY, Trono DJN (2017) KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543(7646):550–554

    CAS  PubMed  Google Scholar 

  40. Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467(7319):1128–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Teixeira FK, Okuniewska M, Malone CD, Coux RX, Rio DC, Lehmann R (2017) piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552(7684):268–272

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, Toth KF (2013) Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev 27(4):390–399

    PubMed  PubMed Central  Google Scholar 

  43. Sienski G, Donertas D, Brennecke J (2012) Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151(5):964–980

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Watanabe T, Lin H (2014) Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Mol Cell 56(1):18–27

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwasaki YW, Murano K, Ishizu H, Shibuya A, Iyoda Y, Siomi MC, Siomi H, Saito K (2016) Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol Cell 63(3):408–419

    CAS  PubMed  Google Scholar 

  46. Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    CAS  PubMed  Google Scholar 

  48. Leung DC, Lorincz MC (2012) Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem Sci 37(4):127–133

    CAS  PubMed  Google Scholar 

  49. Brind’Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A, Kamio A, Bogutz A, Koike T, Karimi MM, Lefebvre L, Kono T, Lorincz MC (2018) LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat Commun 9(1):3331–3345

    PubMed  PubMed Central  Google Scholar 

  50. Lee JW, Kim HS (2006) Endogenous retrovirus HERV-I LTR family in primates: sequences, phylogeny, and evolution. Arch Virol 151(8):1651–1658

    CAS  PubMed  Google Scholar 

  51. Chang NT, Yang WK, Huang HC, Yeh KW, Wu CW (2007) The transcriptional activity of HERV-I LTR is negatively regulated by its cis-elements and wild type p53 tumor suppressor protein. J Biomed Sci 14(2):211–222

    CAS  PubMed  Google Scholar 

  52. Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16(12):1548–1556

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the China Mega-Project for Infectious Disease (2018ZX10102001, 2018ZX10711001, and 2018ZX10734404), and the SKLID Development Grant (2011SKLID104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to this work.

Additional information

Handling Editor: Diego G. Diel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 117 kb)

Supplementary material 2 (DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Wang, X., Song, J. et al. Coxsackievirus B3 infection induces changes in the expression of numerous piRNAs. Arch Virol 165, 105–114 (2020). https://doi.org/10.1007/s00705-019-04451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04451-2

Navigation