Skip to main content
Log in

Complete genome sequence of the novel phage vB_BthS-HD29phi infecting Bacillus thuringiensis

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The phage vB_BthS-HD29phi infecting Bacillus thuringiensis strain HD29 was isolated and purified. The morphology of the phage showed that it belongs to the family Siphoviridae. The phage genome was 32,181 bp in length, comprised linear double-stranded DNA with an average G + C content of 34.9%, and exhibited low similarity to known phage genomes. Genomic and phylogenetic analysis revealed that vB_BthS-HD29phi is a novel phage. In total, 50 putative ORFs were predicted in the phage genome, and only 18 ORFs encoded proteins with known functions. This article reports the genome sequence of a new tailed phage and increases the known genetic diversity of tailed phages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biot 101(7):2691–2711. https://doi.org/10.1007/s00253-017-8175-y

    Article  CAS  Google Scholar 

  2. Liao W, Sun F, Song SY, Shi W, Pang Y (2007) Biology of two lysogenic phages from Bacillus thuringiensis MZ1. Wei Sheng Wu Xue Bao 47(1):92–97

    CAS  PubMed  Google Scholar 

  3. Stromsten NJ, Benson SD, Burnett RM, Bamford DH, Bamford JK (2003) The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J Bacteriol 185(23):6985–6989. https://doi.org/10.1128/jb.185.23.6985-6989.2003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verheust C, Jensen G, Mahillon J (2003) pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. Microbiology 149(Pt 8):2083–2092. https://doi.org/10.1099/mic.0.26307-0

    Article  CAS  PubMed  Google Scholar 

  5. Gillis A, Mahillon J (2014) Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 6(7):2623–2672. https://doi.org/10.3390/v6072623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moumen B, Nguen-The C, Sorokin A (2012) Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646. Genet Res Int 2012:543286. https://doi.org/10.1155/2012/543286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liao W, Song S, Sun F, Jia Y, Zeng W, Pang Y (2008) Isolation, characterization and genome sequencing of phage MZTP02 from Bacillus thuringiensis MZ1. Arch Virol 153(10):1855–1865. https://doi.org/10.1007/s00705-008-0201-z

    Article  CAS  PubMed  Google Scholar 

  8. Yuan Y, Peng Q, Yang S, Zhang S, Fu Y, Wu Y, Gao M (2018) Isolation of a novel Bacillus thuringiensis phage representing a new phage lineage and characterization of its endolysin. Viruses. https://doi.org/10.3390/v10110611

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yuan Y, Gao M, Wu D, Liu P, Wu Y (2012) Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS One 7(5):e37557. https://doi.org/10.1371/journal.pone.0037557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer M (2010) Kircher M (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010(6):pdb prot5448. https://doi.org/10.1101/pdb.prot5448

    Article  PubMed  Google Scholar 

  11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  13. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(Database issue):D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  14. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301. https://doi.org/10.1093/nar/gkr1065

    Article  CAS  PubMed  Google Scholar 

  16. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960. https://doi.org/10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  17. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  Google Scholar 

  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luscombe NM, Austin SE, Berman HM, Thornton JM (2000) An overview of the structures of protein-DNA complexes. Genome Biol 1(1):REVIEWS001. https://doi.org/10.1186/gb-2000-1-1-reviews001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao N, Shearwin K, Mack J, Finzi L, Dunlap D (2013) Purification of bacteriophage lambda repressor. Protein Expr Purif 91(1):30–36. https://doi.org/10.1016/j.pep.2013.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding Y, Manzo C, Fulcrand G, Leng F, Dunlap D, Finzi L (2014) DNA supercoiling: a regulatory signal for the lambda repressor. Proc Natl Acad Sci USA 111(43):15402–15407. https://doi.org/10.1073/pnas.1320644111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Susskind MM, Botstein D (1975) Mechanism of action of Salmonella phage P22 antirepressor. J Mol Biol 98(2):413–424

    Article  CAS  PubMed  Google Scholar 

  27. Bochow S, Elliman J, Owens L (2012) Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like. J Appl Microbiol 113(5):1001–1013. https://doi.org/10.1111/j.1365-2672.2012.05358.x

    Article  CAS  PubMed  Google Scholar 

  28. Lemire S, Figueroa-Bossi N, Bossi L (2011) Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 7(6):e1002149. https://doi.org/10.1371/journal.pgen.1002149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sandegren L, Sjoberg BM (2007) Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium. J Bacteriol 189(3):980–990. https://doi.org/10.1128/JB.01287-06

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the program of the Chinese Academy of Sciences (KSZD‐EW‐Z‐021‐2‐2) and the “One‐Three‐Five” Strategic Programs, Wuhan Institute of Virology, Chinese Academy of Sciences (Y602111SA1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Gao.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Deng, S., liang, L. et al. Complete genome sequence of the novel phage vB_BthS-HD29phi infecting Bacillus thuringiensis. Arch Virol 164, 3089–3093 (2019). https://doi.org/10.1007/s00705-019-04416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04416-5

Navigation