Skip to main content

Advertisement

Log in

Importance of the lumpy skin disease virus (LSDV) LSDV126 gene in differential diagnosis and epidemiology and its possible involvement in attenuation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Examination of lumpy skin disease virus (LSDV) isolates from different geographic regions and times revealed that assays developed in our laboratory for differentiating between virulent Israeli viruses and Neethling vaccine virus (NVV) are generally useful in most, if not all, endemic areas in which NVV-based vaccines are used. Recently it was revealed that the LSDV126 gene of field isolates contains a duplicated region of 27 bp (9 aa), while the vaccine viruses have only one copy. Phylogenetic analysis of a 532-bp segment carrying the LSDV126 gene and whole virus genome sequences revealed that LSDV isolates formed two groups: virulent and vaccine viruses. In this analysis, all of the capripox viruses that lack the ability to efficiently infect cattle were found to carry only one copy of the 27-bp fragment, suggesting that the LSDV126 gene plays an important role in the ability of capripox viruses to infect cattle. In silico analysis of potential antigenic sites in LSDV126 revealed that LSDV126 variants with only one copy of the repeat lack a potentially important antigenic epitope, supporting its possible significance in cattle infection. This study provides new information about the nature of the LSDV126 gene and its possible role in the life cycle of LSDV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agianniotaki EI, Tasioudi KE, Chaintoutis SC, Iliadou P, Mangana-Vougiouka O, Kirtzalidou A, Alexandropoulos T, Sachpatzidis A, Plevraki E, Dovas CI, Chondrokouki E (2017) Lumpy skin disease outbreaks in Greece during 2015–16, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains. Vet Microbiol 201:78–84

    Article  PubMed  Google Scholar 

  2. Barnard BJ, Munz E, Dumbel K, Prozesky L (1994) Lumpy skin disease. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock with special reference to Southern Africa, vol 1. Oxford University Press, Cape Town, pp 604–612

    Google Scholar 

  3. Beard PM (2016) Lumpy skin disease: a direct threat to Europe. Vet Rec 178:557–558

    Article  PubMed  Google Scholar 

  4. Bhanuprakasha V, Indranib BK, Hosamania M, Singha RK (2006) The current status of sheep pox disease. Comput Immunol Microbiol Infect Dis 29:27–60

    Article  Google Scholar 

  5. Brenner J, Bellaiche M, Gross E, Elad D, Oved Z, Haimovitz M, Wasserman A, Friedgut O, Stram Y et al (2009) Appearance of skin lesions in cattle populations vaccinated against lumpy skin disease: statutory challenge. Vaccine 27:1500–1503

    Article  CAS  PubMed  Google Scholar 

  6. Chihota CM, Rennie LF, Kitching RP, Mellor PS (2001) Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiol Infect 126:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coetzer JAW, Thomson GR, Tustin RC (1994) Poxviridae. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock, vol 1. Oxford University Press, Cape Town, pp 601–603

    Google Scholar 

  8. Davies FG (1991) Lumpy skin disease, an African capripox virus disease of cattle. Br Vet J 147:489–503

    Article  CAS  PubMed  Google Scholar 

  9. Davies FG (1991) Lumpy skin disease of cattle: a growing problem in Africa and the Near East. World Anim Rev 68:37–42

    Google Scholar 

  10. Diesel AM (1949). The epizootiology of lumpy skin disease in South Africa. In: Proceedings of 14th International Viet Congress, London, vol 2, pp 492–500

  11. Fenner F (1996) Poxviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2673–2702

    Google Scholar 

  12. Harris RS (2007) Improved pairwise alignment of genomic DNA (pdf). PhD thesis. Penn State University, Computer Science and Engineering

  13. Heine HG, Stevens MP, Foord AJ, Boyle DB (1999) A Capripoxvirus detection PCR and antibody ELISA based on the major antigen P32, the homolog of the vaccinia virus H3L gene. J Immunol Meth 30:187–196

    Article  Google Scholar 

  14. House JA, Wilson TM, El Nakashly S, Karim IA, Ismail I, El Danaf N, Moussa AM, Ayoub NN (1990) The isolation of lumpy skin disease virus and bovine herpesvirus-4 from cattle in Egypt. J Vet Diagn Invest 2:111–115

    Article  CAS  PubMed  Google Scholar 

  15. Kara PD, Afonso CL, Wallace DB, Kutish GF, Abolnik C, Lu Z, Vreede FT, Taljaard LCF, Zsak A et al (2003) Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of lumpy skin disease virus. Arch Virol 148:1335–1356

    CAS  PubMed  Google Scholar 

  16. Kitching RP, Taylor WP (1985) Transmission of capripox viruses. Res Vet Sci 39:196–199

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evolut 35:1547–1549

    Article  CAS  Google Scholar 

  18. Lamien CE, Lelenta M, Goger W, Silber R, Tuppurainen E, Matijevic M, Luckins AG, Diallo A (2011) Real time PCR method for simultaneous detection, quantitation and differentiation of capripox viruses. J Virol Methods 171:134–140

    Article  CAS  PubMed  Google Scholar 

  19. Lubinga JC, Tuppurainen ES, Mahlare R, Coetzer JA, Stoltsz WH, Venter EH (2015) Evidence of transstadial and mechanical transmission of lumpy skin disease virus by Amblyomma hebraeum ticks. Transbound Emerg Dis 62:174–182

    Article  CAS  PubMed  Google Scholar 

  20. Lubinga JC, Tuppurainen ES, Stoltsz WH, Ebersohn K, Coetzer JA, Venter EH (2013) Detection of lumpy skin disease virus in saliva of ticks fed on lumpy skin disease virus-infected cattle. Exp Appl Acarol 61:129–138

    Article  CAS  PubMed  Google Scholar 

  21. Menasherow S, Rubinstein-Giuni M, Eyngor Kovtunenko A, Eyngor Y, Fridgut O, Rotenberg D, Khinich Y, Stram Y (2014) Development of an assay to differentiate between virulent and vaccine strains of lumpy skin disease virus (LSDV). J Virol Methods 199:95–101

    Article  CAS  PubMed  Google Scholar 

  22. Menasherow S, Rubinstein-Giuni M, Kovtunenko A, Eyngor Y, Fridgut O, Rotenberg D, Khinich Y, Stram Y (2016) A high-resolution melting (HRM) assay for the differentiation between Israeli field and Neethling vaccine lumpy skin disease viruses. Viro Methods 232:12–15

    Article  CAS  Google Scholar 

  23. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prozesky L, Barnard BJ (1982) A study of the pathology of lumpy skin disease in cattle. Onderstepoort J Vet Res 49:167–175

    CAS  PubMed  Google Scholar 

  25. Stram Y, Kuznetzova L, Friedgut O, Gelman B, Yadin H, Rubinstein-Guini M (2008) The use of lumpy skin disease virus genome termini for detection and phylogenetic analysis. Virol Methods 151:225–229

    Article  CAS  Google Scholar 

  26. Tasioudi KE, Antoniou SE, Iliadou P, Sachpatzidis A, Plevrak E, Agianniotaki EI, Fouki C, Mangana-Vougiouka O, Chondrokouki E, Dile C (2016) Emergence of Lumpy Skin Disease in Greece, 2015. Transbound Emerg Dis 63:260–265

    Article  CAS  PubMed  Google Scholar 

  27. Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish F, Rock DL (2002) The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tuppurainen ES, Lubinga JC, Stoltsz WH, Troskie M, Carpenter ST, Coetzer JA, Venter EH, Oura CA (2013) Mechanical transmission of lumpy skin disease virus by Rhipicephalus appendiculatus male ticks. Epidemiol Infect 141:425–430

    Article  CAS  PubMed  Google Scholar 

  29. Tuppurainen ES, Oura CA (2012) Lumpy skin disease: an emerging threat to Europe, the Middle East and Asia. Transbound Emerg Dis 59:40–48

    Article  CAS  PubMed  Google Scholar 

  30. Tuppurainen ES, Venter EH, Coetzer JA (2005) The detection of lumpy skin disease virus in samples of experimentally infected cattle using different diagnostic techniques. Onderstepoort J Vet Res 72:153–164

    Article  CAS  PubMed  Google Scholar 

  31. Yeruham I, Nir O, Braverman Y, Davidson M, Grinstein H, Haymovitch M, Zamir O (1995) Spread of lumpy skin disease in Israeli dairy herds. Vet Rec 137:91–93

    Article  CAS  PubMed  Google Scholar 

  32. Venkatesan G, Balamurugan V, Yogisharadhya R, Kumar A, Bhanuprakash V (2012) Differentiation of sheeppox and goatpox viruses by polymerase Chain reaction-restriction fragment length polymorphism. Virol Sin 27:353–359

    Article  CAS  PubMed  Google Scholar 

  33. Vidanović D, Šekler M, Petrović T, Debeljak Z, Vasković N, Matović K, Hoffmann B (2016) Lumpy skin disease virus Real-time PCR assays for the specific detection of field Balkan strains of lumpy skin disease virus. Acta Vet Beograd 66:444–454

    Article  Google Scholar 

  34. Von Backstrom U (1945) Ngamiland cattle disease: Preliminary report on a new disease, the etiological agent being probably of an infectious nature. J S Afr Vet Assoc 16:29–35

    Google Scholar 

  35. Wylezich C, Papa A, Beer M, Höper D (2018) A versatile sample processing workflow for metagenomic pathogen detection. Sci Rep 2018(8):13108. https://doi.org/10.1038/s41598-018-31496-1

    Article  CAS  Google Scholar 

  36. Ziegler U, Fast C, Eiden M, Bock S, Schulze C, Hoeper D, Ochs A, Schlieben P, Keller M, Zielke DE, Luehken R, Cadar D, Walther D, Schmidt-Chanasit J, Groschup MH (2016) Evidence for an independent third Usutu virus introduction into Germany. Vet Microbiol 192:60–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Martin Beer and Dr. Dirk Hoeper from the Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany, for whole-genome sequencing of the Israeli LSDV isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Stram.

Ethics declarations

Conflict of interest

There is no potential conflict of interest of any kind in the data presented in this manuscript.

Human and animal rights statement

This research does not include any experiments that involved humans or animals.

Informed consent

All participating authors gave their consent for this publication.

Additional information

Communicated by William G Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erster, O., Rubinstein, M.G., Menasherow, S. et al. Importance of the lumpy skin disease virus (LSDV) LSDV126 gene in differential diagnosis and epidemiology and its possible involvement in attenuation. Arch Virol 164, 2285–2295 (2019). https://doi.org/10.1007/s00705-019-04327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04327-5

Navigation