Archives of Virology

, Volume 164, Issue 7, pp 1781–1791 | Cite as

Evidence of zoonotic transmission of VP6 and NSP4 genes into human species A rotaviruses isolated in Pakistan in 2010

  • Sana TamimEmail author
  • Jelle Matthijnssens
  • Elisabeth Heylen
  • Mark Zeller
  • Marc Van Ranst
  • Muhammad Salman
  • Fariha Hasan
Original Article


Introduction of animal group A rotavirus (RVA) gene segments into the human RVA population is a major factor shaping the genetic landscape of human RVA strains. The VP6 and NSP4 genes of 74 G/P-genotyped RVA isolates collected in Rawalpindi during 2010 were analyzed, revealing the presence of VP6 genotypes I1 (60.8%) and I2 (39.2%) and NSP4 genotypes E1 (60.8%), E2 (28.3%) and E-untypable (10.8%) among the circulating human RVA strains. The typical human RVA combinations I1E1 and I2E2 were found in 59.4% and 24.3% of the cases, respectively, whereas 5.4% of the RVA strains were reassortants, i.e., either I1E2 or I2E1. The phylogeny of the NSP4 gene showed that one G2P[4] and two G1P[6] RVA strains clustered with porcine E1 RVA strains or RVA strains that were considered to be (partially) of porcine origin. In addition, the NSP4 gene segment of the unusual human G6P[1] RVA strains clustered closely with bovine E2 RVA strains, further strengthening the hypothesis of an interspecies transmission event. The study further demonstrates the role of genomic re-assortment and the involvement of interspecies transmission in the evolution of human RVA strains. The VP6 and NSP4 nucleotide sequences analyzed in the study received the GenBank accession numbers KC846908- KC846971 and KC846972-KC847037, respectively.



Sana Tamim was supported by a PhD stipend and mobility grant from the Higher Education Commission (HEC) for research work at the Rega Institute for Medical Research, KU Leuven University, Leuven, Belgium. M.Z. was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen).

Compliance withy ethical standards

Conflict of interest

The authors have declared that no competing interest exists that could inappropriately influence their work during the submission process.

Supplementary material

705_2019_4271_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)


  1. 1.
    Crawford SE, Patel DG, Cheng E, Berkova Z, Hyser JM, Ciarlet M, Finegold MJ, Conner ME, Estes MK (2006) Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J Virol 80:4820–4832CrossRefGoogle Scholar
  2. 2.
    Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM et al (eds) Fields Virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401Google Scholar
  3. 3.
    Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gomara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219CrossRefGoogle Scholar
  4. 4.
    Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413CrossRefGoogle Scholar
  5. 5.
    Matthijnssens J, Mino S, Papp H, Potgieter C, Novo L, Heylen E, Zeller M, Garaicoechea L, Badaracco A, Lengyel G, Kisfali P, Cullinane A, Collins PJ, Ciarlet M, O’Shea H, Parreno V, Banyai K, Barrandeguy M, Van Ranst M (2012) Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 93:866–875CrossRefGoogle Scholar
  6. 6.
    Papp H, Al-Mutairi LZ, Chehadeh W, Farkas SL, Lengyel G, Jakab F, Martella V, Szucs G, Banyai K (2012) Novel NSP4 genotype in a camel G10P[15] rotavirus strain. Acta Microbiol Immunol Hung 59:411–421CrossRefGoogle Scholar
  7. 7.
    Trojnar E, Sachsenroder J, Twardziok S, Reetz J, Otto PH, Johne R (2013) Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 94:136–142CrossRefGoogle Scholar
  8. 8.
    Heiman EM, McDonald SM, Barro M, Taraporewala ZF, Bar-Magen T, Patton JT (2008) Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol 82:11106–11116CrossRefGoogle Scholar
  9. 9.
    McDonald SM, Matthijnssens J, McAllen JK, Hine E, Overton L, Wang S, Lemey P, Zeller M, Van Ranst M, Spiro DJ, Patton JT (2009) Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog 5:e1000634CrossRefGoogle Scholar
  10. 10.
    Iturriza-Gómara M, Isherwood B, Desselberger U, Gray J (2001) Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J of virol 75:3696–3705CrossRefGoogle Scholar
  11. 11.
    Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC (2011) Atomic model of an infectious rotavirus particle. EMBO J 30(2):408–416CrossRefGoogle Scholar
  12. 12.
    Mihalov-Kovács E, Gellért Á, Marton S, Farkas SL, Fehér E, Oldal M, Jakab F, Martella V, Bányai K (2015) Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis 21(4):660–663CrossRefGoogle Scholar
  13. 13.
    Benati FJ, Maranhao AG, Lima RS, da Silva RC, Santos N (2010) Multiplegene characterization of rotavirus strains: evidence of genetic linkage among the VP7-, VP4-, VP6-, and NSP4-encoding genes. J Med Virol 82:1797–1802CrossRefGoogle Scholar
  14. 14.
    Khamrin P, Maneekarn N, Malasao R, Nguyen TA, Ishida S, Okitsu S, Ushijima H (2010) Genotypic linkages of VP4, VP6, VP7, NSP4, NSP5 genes of rotaviruses circulating among children with acute gastroenteritis in Thailand. Infect Genet Evol 10:467–472CrossRefGoogle Scholar
  15. 15.
    Matthijnssens J, Rahman M, Ciarlet M, Zeller M, Heylen E, Nakagomi T, Uchida R, Hassan Z, Azim T, Nakagomi O, Van Ranst M (2010) Reassortment of human rotavirus gene segments into G11 rotavirus strains. Emerg Infect Dis 16:625–630CrossRefGoogle Scholar
  16. 16.
    Solberg OD, Hasing ME, Trueba G, Eisenberg JN (2009) Characterization of novel VP7, VP4, and VP6 genotypes of a previously untypeable group A rotavirus. Virology 385:58–67CrossRefGoogle Scholar
  17. 17.
    Esona MD, Mijatovic-Rustempasic S, Conrardy C, Tong S, Kuzmin IV, Agwanda B, Breiman RF, Banyai K, Niezgoda M, Rupprecht CE, Gentsch JR, Bowen MD (2010) Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum). Emerg Infect Dis 16:1844–1852CrossRefGoogle Scholar
  18. 18.
    Ghosh S, Shintani T, Kobayashi N (2012) Evidence for the porcine origin of equine rotavirus strain H-1. Vet Microbiol 158:410–414CrossRefGoogle Scholar
  19. 19.
    Guo D, Liu J, Lu Y, Sun Y, Yuan D, Jiang Q, Lin H, Li C, Si C, Qu L (2012) Full genomic analysis of rabbit rotavirus G3P[14] strain N5 in China: identification of a novel VP6 genotype. Infect Genet Evol 12:1567–1576CrossRefGoogle Scholar
  20. 20.
    Berkova Z, Crawford SE, Trugnan G, Yoshimori T, Morris AP, Estes MK (2006) Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 80:6061–6071CrossRefGoogle Scholar
  21. 21.
    Chen F, Wang H, He H, Song L, Wu J, Gao Y, Liu X, He C, Yang H, Chen L, Wang L, Li G, Li Y, Kaplan DE, Zhong J (2011) Short hairpin RNAmediated silencing of bovine rotavirus NSP4 gene prevents diarrhoea in suckling mice. J Gen Virol 92:945–951CrossRefGoogle Scholar
  22. 22.
    Rajasekaran D, Sastri NP, Marathahalli JR, Indi SS, Pamidimukkala K, Suguna K, Rao CD (2008) The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties. J Gen Virol 89:1485–1496CrossRefGoogle Scholar
  23. 23.
    Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Patton JT (2005) Rotavirus glycoprotein NSP4 is a modulator of viral transcription in the infected cell. J Virol 79:15165–15174CrossRefGoogle Scholar
  24. 24.
    Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272:101–104CrossRefGoogle Scholar
  25. 25.
    Au KS, Chan WK, Burns JW, Estes MK (1989) Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol 63:4553–4562Google Scholar
  26. 26.
    Meyer JC, Bergmann CC, Bellamy AR (1989) Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology 171:98–107CrossRefGoogle Scholar
  27. 27.
    Zhang M, Zeng CQ, Dong Y, Ball JM, Saif LJ, Morris AP, Estes MK (1998) Mutations in rotavirus nonstructural glycoprotein NSP4 are associated with altered virus virulence. J Virol 72:3666–3672Google Scholar
  28. 28.
    Araujo IT, Heinemann MB, Mascarenhas JD, Assis RM, Fialho AM, Leite JP (2007) Molecular analysis of the NSP4 and VP6 genes of rotavirus strains recovered from hospitalized children in Rio de Janeiro, Brazil. J Med Microbiol 56:854–859CrossRefGoogle Scholar
  29. 29.
    Ghosh S, Gatheru Z, Nyangao J, Adachi N, Urushibara N, Kobayashi N (2011) Full genomic analysis of a simian SA11-like G3P[2] rotavirus strain isolated from an asymptomatic infant: identification of novel VP1, VP6 and NSP4 genotypes. Infect Genet Evol 11:57–63CrossRefGoogle Scholar
  30. 30.
    Matthijnssens J, Rahman M, Martella V, Xuelei Y, De Vos S, De Leener K, Ciarlet M, Buonavoglia C, Van Ranst M (2006) Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J Virol 80:3801–3810CrossRefGoogle Scholar
  31. 31.
    Sharma S, Paul VK, Bhan MK, Ray P (2009) Genomic characterization of nontypeable rotaviruses and detection of a rare G8 strain in Delhi, India. J Clin Microbiol 47:3998–4005CrossRefGoogle Scholar
  32. 32.
    Rahman M, Goegebuer T, De Leener K, Maes P, Matthijnssens J, Podder G, Azim T, Van Ranst M (2004) Chromatography paper strip method for collection, transportation, and storage of rotavirus RNA in stool samples. J Clin Microbiol 42:1605–1608CrossRefGoogle Scholar
  33. 33.
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874Google Scholar
  34. 34.
    Tamim S, Hasan F, Matthijnssens J, Sharif S, Shaukat S, Alam MM, Angez M, Suleman Rana M, Khurshid A, Zaidi SS (2013) Epidemiology and phylogenetic analysis of VP7 and VP4 genes of rotaviruses circulating in Rawalpindi, Pakistan during 2010. Infect Genet Evol 14:161–168CrossRefGoogle Scholar
  35. 35.
    Iturriza-Gomara M, Anderton E, Kang G, Gallimore C, Phillips W, Desselberger U, Gray J (2003) Evidence for genetic linkage between the gene segments encoding NSP4 and VP6 proteins in common and reassortant human rotavirus strains. J Clin Microbiol. 41:3566–3573CrossRefGoogle Scholar
  36. 36.
    Au KS, Mattion NM, Estes MK (1993) A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology 194:665–673CrossRefGoogle Scholar
  37. 37.
    Ghosh S, Varghese V, Samajdar S, Bhattacharya SK, Kobayashi N, Naik TN (2007) Evidence for independent segregation of the VP6- and NSP4- encoding genes in porcine group A rotavirus G6P[13] strains. Arch Virol 152:423–429CrossRefGoogle Scholar
  38. 38.
    Iturriza Gomara M, Wong C, Blome S, Desselberger U, Gray J (2002) Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J Virol 76:6596–6601CrossRefGoogle Scholar
  39. 39.
    Mukherjee A, Ghosh S, Bagchi P, Dutta D, Chattopadhyay S, Kobayashi N, Chawla-Sarkar M (2010) Full genomic analyses of human rotavirus G4P[4], G4P[6], G9P[19] and G10P[6] strains from North-eastern India: evidence for interspecies transmission and complex reassortment events. Clin Microbiol Infect 17:1343–1346CrossRefGoogle Scholar
  40. 40.
    Tatte VS, Chitambar SD (2012) Evidence of discordant genetic linkage in the VP4, VP6, VP7 and NSP4 encoding genes of rotavirus strains from adolescent and adult patients with acute gastroenteritis. Infect Genet Evol 12:1630–1634CrossRefGoogle Scholar
  41. 41.
    Banerjee I, Iturriza-Gomara M, Rajendran P, Primrose B, Ramani S, Gray JJ, Brown DW, Kang G (2007) Molecular characterization of G11P[25] and G3P[3] human rotavirus strains associated with asymptomatic infection in South India. J Med Virol 79:1768–1774CrossRefGoogle Scholar
  42. 42.
    Rahman M, Matthijnssens J, Nahar S, Podder G, Sack DA, Azim T, Van Ranst M (2005) Characterization of a novel P[25], G11 human group a rotavirus. J Clin Microbiol 43:3208–3212CrossRefGoogle Scholar
  43. 43.
    Doan YH, Nakagomi T, Aboudy Y, Silberstein I, Behar-Novat E, Nakagomi O, Shulman LM (2013) Identification by full-genome analysis of a bovine rotavirus transmitted directly to and causing diarrhea in a human child. J Clin Microbiol 51:182–189CrossRefGoogle Scholar
  44. 44.
    Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Haga K, Katayama K, Kato T, Ouchi Y, Kurahashi H et al (2015) Emergence and characterization of unusual DS-1-like G1P[8] rotavirus strains in children with diarrhea in Thailand. PLoS One 10:739CrossRefGoogle Scholar
  45. 45.
    Fujii Y, Nakagomi T, Nishimura N, Noguchi A, Miura S, Ito H, Doan YH, Takahashi T, Ozaki T et al (2014) Spread and predominance in Japan of novel G1P[8] double-reassortant rotavirus strains possessing a DS-1-like genotype constellation typical of G2P[4] strains. Infect Genet Evol 28:426–433CrossRefGoogle Scholar
  46. 46.
    Nakagomi T, Nguyen MQ, Gauchan P, Agbemabiese CA, Kaneko M, Do LP, Vu TD, Nakagomi O (2017) Evolution of DS-1-like G1P[8] double-gene reassortant rotavirus A strains causing gastroenteritis in children in Vietnam in 2012/2013. Arch Virol. 162(3):739–748CrossRefGoogle Scholar
  47. 47.
    Jere KC, Chaguza C, Bar-Zeev N, Lowe J, Peno C, Kumwenda B, Nakagomi O, Tate JE, Parashar UD, Heyderman RS, French N, Cunliffe N, Iturriza-Gomara M (2018) Emergence of double- and triple-gene reassortant G1P[8] rotaviruses possessing a DS-1-like backbone after rotavirus vaccine introduction in Malawi. J Virol 92(3):17Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Sana Tamim
    • 1
    Email author
  • Jelle Matthijnssens
    • 2
  • Elisabeth Heylen
    • 3
  • Mark Zeller
    • 4
  • Marc Van Ranst
    • 5
  • Muhammad Salman
    • 1
  • Fariha Hasan
    • 6
  1. 1.Public Health Laboratories Division, Department of Virology/ImmunologyNational Institute of HealthIslamabadPakistan
  2. 2.Laboratory of Viral MetagenomicsRega InstituteLeuvenBelgium
  3. 3.Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical ResearchKU LeuvenLeuvenBelgium
  4. 4.Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaUSA
  5. 5.Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical ResearchKU Leuven-University of LeuvenLeuvenBelgium
  6. 6.Department of MicrobiologyQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations