Skip to main content
Log in

Analysis of new grapevine Pinot gris virus (GPGV) isolates from Northeast Italy provides clues to track the evolution of a newly emerging clade

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Grapevine Pinot gris disease (GPGD) has been associated with a trichovirus, namely grapevine Pinot gris virus (GPGV), although the virus has been reported in both symptomatic and asymptomatic plants. Despite the puzzling aetiology of the disease and potentially important role of GPGV, the number of fully sequenced isolates is still rather limited. With the aim of increasing the knowledge on intraspecific diversity and evolution, nine GPGV isolates were collected from different vineyards in the Friuli Venezia Giulia region (Northeast Italy), cloned, sequenced, and subjected to robust phylogenetic and other analyses. The results provided hints on the evolutionary history of the virus, the occurrence of recombination, and the presence of clade-specific SNPs in sites of putative protein modifications with potential impact on the interaction with the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bianchi GL, De Amicis F, De Sabbata L et al (2015) Occurrence of Grapevine Pinot gris virus in Friuli Venezia Giulia (Italy): field monitoring and virus quantification by real-time RT-PCR. EPPO Bull 45:22–32. https://doi.org/10.1111/epp.12196

    Article  Google Scholar 

  2. Giampetruzzi A, Roumi V, Roberto R et al (2012) A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv. Pinot gris. Virus Res 163:262–268. https://doi.org/10.1016/j.virusres.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Tarquini G, Ermacora P, Bianchi GL et al (2018) Localization and subcellular association of Grapevine Pinot Gris Virus in grapevine leaf tissues. Protoplasma 255:923–935. https://doi.org/10.1007/s00709-017-1198-5

    Article  CAS  PubMed  Google Scholar 

  4. Martelli GP (2014) Directory of virus and virus-like diseases of the grapevine and their agents. J Plant Pathol 96:1–136. https://doi.org/10.4454/JPP.V96I1SUP

    Article  Google Scholar 

  5. Saldarelli P, Giampetruzzi A, Morelli M et al (2015) Genetic variability of grapevine pinot gris virus and Its association with grapevine leaf mottling and deformation. Phytopathology 105:555–563. https://doi.org/10.1094/PHYTO-09-14-0241-R

    Article  CAS  PubMed  Google Scholar 

  6. Reynard J-S, Schumacher S, Menzel W et al (2016) First report of grapevine pinot gris virus in German Vineyards. Plant Dis 100:2545. https://doi.org/10.1094/PDIS-07-16-0966-PDN

    Article  Google Scholar 

  7. Al Rwahnih M, Golino D, Rowhani A (2016) First report of grapevine Pinot gris virus infecting grapevine in the United States. Plant Dis 100:1030. https://doi.org/10.1094/PDIS-10-15-1235-PDN

    Article  Google Scholar 

  8. Poojari S, Lowery T, Rott M et al (2016) First report of grapevine Pinot gris virus in British Columbia, Canada. Plant Dis 100:1513. https://doi.org/10.1094/PDIS-02-16-0178-PDN

    Article  Google Scholar 

  9. Bertazzon N, Filippin L, Forte V, Angelini E (2016) Grapevine Pinot gris virus seems to have recently been introduced to vineyards in Veneto, Italy. Arch Virol 161:711–714. https://doi.org/10.1007/s00705-015-2718-2

    Article  CAS  PubMed  Google Scholar 

  10. Bertazzon N, Angelini E, Borgo M (2002) Detection of grapevine leafroll-associated virus-2 (GLRaV-2) by ELISA and RT-PCR. J Plant Pathol 84:175

    Google Scholar 

  11. Bianchi GL, Bertazzon N, De Amicis F et al (2010) Multiplex real time RT-PCR for the detection of the most important viruses of grapevine. Petria 20:180–181

    Google Scholar 

  12. Bertazzon N, Forte V, Filippin L et al (2017) Association between genetic variability and titre of grapevine Pinot gris virus with disease symptoms. Plant Pathol 66:949–959. https://doi.org/10.1111/ppa.12639

    Article  Google Scholar 

  13. Sabanadzovic S, Abou-Ghanem N, Castellano MA et al (2000) Grapevine fleck virus-like viruses in Vitis. Arch Virol 145:553–565. https://doi.org/10.1007/s007050050046

    Article  CAS  PubMed  Google Scholar 

  14. MacKenzie DJ, McLean MA, Mukerji S, Green M (1997) Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis 81:222–226. https://doi.org/10.1094/PDIS.1997.81.2.222

    Article  CAS  PubMed  Google Scholar 

  15. Huson DH, Bryant D (2005) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  16. Bryant D, Moulton V (2002) NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. International workshop on algorithms in bioinformatics. Springer, Berlin, pp 375–391

    Chapter  Google Scholar 

  17. Ruths D, Nakhleh L (2005) Recombination and phylogeny: effects and detection. Int J Bioinform Res Appl 1:202–212

    Article  CAS  PubMed  Google Scholar 

  18. Kosakovsky Pond SL, Posada D, Gravenor MB et al (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098. https://doi.org/10.1093/bioinformatics/btl474

    Article  CAS  PubMed  Google Scholar 

  19. Martin DP, Murrell B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Holland BR, Huber KT, Moulton V, Lockhart PJ (2004) Using consensus networks to visualize contradictory evidence for species phylogeny. Mol Biol Evol 21:1459–1461

    Article  CAS  PubMed  Google Scholar 

  21. Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jakubiec A, Jupin I (2007) Regulation of positive-strand RNA virus replication: the emerging role of phosphorylation. Virus Res 129:73–79. https://doi.org/10.1016/j.virusres.2007.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang L, Sineva EV, Hargittai MR et al (2004) Purification and characterization of hepatitis C virus non-structural protein 5A expressed in Escherichia coli. Protein Expr Purif 37:144–153. https://doi.org/10.1016/j.pep.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  24. Pietschmann T, Lohmann V, Rutter G et al (2001) Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 75:1252–1264. https://doi.org/10.1128/JVI.75.3.1252-1264.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee J-Y, Lucas WJ (2001) Phosphorylation of viral movement proteins—regulation of cell-to-cell trafficking. Trends Microbiol 9:5–8. https://doi.org/10.1016/S0966-842X(00)01901-6

    Article  CAS  PubMed  Google Scholar 

  26. Shapka N, Stork J, Nagy PD (2005) Phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus adjacent to the RNA binding site affects viral RNA replication. Virology 343:65–78. https://doi.org/10.1016/j.virol.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  27. Ann Haley, Tony Hunter, Paula Kiberstis, David Zimmern (2002) Multiple serine phosphorylation sites on the 30 kDa TMV cell-to-cell movement protein synthesized in tobacco protoplasts. Plant J 8:715–724. https://doi.org/10.1046/j.1365-313X.1995.08050715.x

    Article  Google Scholar 

  28. Kawakami S, Padgett HS, Hosokawa D et al (1999) Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J Virol 73(8):6831–6840

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsushita Y, Hanazawa K, Yoshioka K et al (2000) In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. J Gen Virol 81(8):2095–2102

    Article  CAS  PubMed  Google Scholar 

  30. Sokolova M, Prüfer D, Tacke E, Rohde W (1997) The potato leafroll virus 17K movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase C. FEBS Lett 400:201–205. https://doi.org/10.1016/S0014-5793(96)01380-4

    Article  CAS  PubMed  Google Scholar 

  31. SéRon K, Bernasconi L, Allet B, Haenni A-L (1996) Expression of the 69K movement protein of turnip yellow mosaic virus in insect cells. Virology 219:274–278. https://doi.org/10.1006/viro.1996.0246

    Article  PubMed  Google Scholar 

  32. Matsushita Y, Yoshioka K, Shigyo T et al (2002) Phosphorylation of the movement protein of cucumber mosaic virus in transgenic tobacco plants. Virus Genes 24:231–234. https://doi.org/10.1023/A:1015324415110

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Regione Friuli Venezia Giulia (Italy; CUP: F22I15000110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Firrao.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Sead Sabanadzovic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarquini, G., De Amicis, F., Martini, M. et al. Analysis of new grapevine Pinot gris virus (GPGV) isolates from Northeast Italy provides clues to track the evolution of a newly emerging clade. Arch Virol 164, 1655–1660 (2019). https://doi.org/10.1007/s00705-019-04241-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04241-w

Navigation