Skip to main content
Log in

Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In the present study, we investigate the biological properties and genomic organization of virulent bacteriophage AM24, which specifically infects multidrug-resistant clinical Acinetobacter baumannii strains with a K9 capsular polysaccharide structure. The phage was identified as a member of the family Myoviridae by transmission electron microscopy. The AM24 linear double-stranded DNA genome of 97,177 bp contains 167 open reading frames. Putative functions were assigned for products of 40 predicted genes, including proteins involved in nucleotide metabolism and DNA replication, packaging of DNA into the capsid, phage assembly and structural proteins, and bacterial cell lysis. The gene encoding the tailspike, which possesses depolymerase activity towards the corresponding capsular polysaccharides, is situated in the phage genome outside of the structural module, upstream of the genes responsible for packaging of DNA into the capsid. The data on characterization of depolymerase-carrying phage AM24 contributes to our knowledge of the diversity of viruses infecting different capsular types of A. baumannii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doi Y, Murray GL, Peleg AY (2015) Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 36(1):85–98. https://doi.org/10.1055/s-0034-1398388

    Article  PubMed  PubMed Central  Google Scholar 

  2. Towner KJ (2009) Acinetobacter: an old friend, but a new enemy. J Hosp Infect 73(4):355–363. https://doi.org/10.1016/j.jhin.2009.03.032

    Article  CAS  PubMed  Google Scholar 

  3. Zarrilli R, Pournaras S, Giannouli M, Tsakris A (2013) Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41(1):11–19. https://doi.org/10.1016/j.ijantimicag.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  4. Kenyon JJ, Hall RM (2013) Variation in the Complex Carbohydrate Biosynthesis Loci of Acinetobacter baumannii Genomes. PLoS One 8(4):e62160. https://doi.org/10.1371/journal.pone.0062160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Popova AV, Lavysh DG, Klimuk EI et al (2017) Novel Fri1-like Viruses Infecting Acinetobacter baumannii—vB_AbaP_AS11 and vB_AbaP_AS12-characterization, comparative genomic analysis, and host-recognition strategy. Viruses. 9(7):188. https://doi.org/10.3390/v9070188

    Article  CAS  PubMed Central  Google Scholar 

  6. Adams MD (1959) Bacteriophages. Interscience Publishers Inc., New York (OCLC 326505)

    Google Scholar 

  7. Bartual SG, Seifert H, Hippler C et al (2005) Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390. https://doi.org/10.1128/JCM.43.9.4382-4390.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diancourt L, Passet V, Nemec A et al (2010) The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 5(4):e10034. https://doi.org/10.1371/journal.pone.0010034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oliveira H, Costa AR, Konstantinides N et al (2017) Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains. Environ Microbiol 19(12):5060–5077. https://doi.org/10.1111/1462-2920.13970

    Article  CAS  PubMed  Google Scholar 

  10. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Laboratory Press, Cold Spring Harbor (ISBN: 0-87969-309-6)

    Google Scholar 

  11. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  12. Laslett D, Canback B (2004) ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. https://doi.org/10.1093/nar/gki408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Novikova O, Topilina N, Belfort M (2014) Enigmatic distribution, evolution, and function of inteins. J Biol Chem 289(21):14490–14497. https://doi.org/10.1074/jbc.R114.548255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turner D, Ackermann HW, Kropinski AM et al (2017) Comparative analysis of 37 Acinetobacter bacteriophages. Viruses 10(1):5. https://doi.org/10.3390/v10010005

    Article  CAS  PubMed Central  Google Scholar 

  16. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol. 1079:105–16. https://doi.org/10.1007/978-1-62703-646-7_6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Evgeny Zhilenkov (MicroWorld Ltd., Moscow, Russia) for assistance with TEM, Dr. Daria Lavysh (Heidelberg University, Heidelberg, Germany) for the participating in bioinformatic analysis, Dr. Yuriy Knirel’s group (N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia) for determination of the A. baumannii B05 CPS structure, and Dr. Olga Ershova (N. N. Burdenko Research Institute for Neurosurgery, Moscow, Russia) for the providing of clinical materials and A. baumannii strains.

Funding

The isolation of phage AM24 and determination of its infection parameters were supported by the Sectoral Scientific Program of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. Genomic analysis and phage host range determination were supported by the Russian Science Foundation (grant 18-15-00403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia V. Popova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, A.V., Shneider, M.M., Myakinina, V.P. et al. Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type. Arch Virol 164, 1493–1497 (2019). https://doi.org/10.1007/s00705-019-04208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04208-x

Navigation