Advertisement

Archives of Virology

, Volume 164, Issue 5, pp 1475–1478 | Cite as

Characterization and complete genomic analysis of two Salmonella phages, SenALZ1 and SenASZ3, new members of the genus Cba120virus

  • Ling Chen
  • Guoye Guan
  • Quan Liu
  • Shengjian Yuan
  • Tingwei Yan
  • Linyu Tian
  • Yan Zhou
  • Yixuan Zhao
  • Yingfei Ma
  • Ting WeiEmail author
  • Xiongfei FuEmail author
Annotated Sequence Record
  • 147 Downloads

Abstract

Salmonella phages SenALZ1 and SenASZ3, two novel phages infecting Salmonella enterica, were isolated and analyzed. The genomes of these two phages consist of 154,811 and 157,630 base pairs (bp), with G+C contents of 44.56% and 44.74%, respectively. Fifty-nine of 199 open reading frames (ORFs) in the SenALZ1 genome, and 60 of the 204 in the SenASZ3 genome show similarity to reference sequences in the NCBI nr database that encode putative phage proteins with predicted functions. Based on the results of transmission electron microscopy (TEM) examination, complete genome sequence alignment, phylogenetic analysis, and gene annotation, we propose that these two phages are representative isolates of two new species of the genus Cba120virus, subfamily Cvivirinae, family Ackermannviridae.

Notes

Acknowledgements

We are grateful to J. Feng from the Institute of Microbiology of the Chinese Academy of Sciences for providing bacterial strains. This study was funded by the Shenzhen Science and Technology Innovation Committee (JCYJ20160229201759414, JCYJ20170818155011625) and the Shenzhen Peacock Team Project (KQTD2016112915000294 and KQTD2015033117210153). This work was also funded by the National Natural Science Foundation of China (31570115, 31570095, 31500104) and the Engineering Laboratory for Automated Manufacturing of Therapeutic Synthetic Microbes (Shenzhen Development and Reform Commission no. [2016]1194).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2019_4183_MOESM1_ESM.doc (353 kb)
Supplementary material 1 (DOC 353 kb)

References

  1. 1.
    Palomo G, Campos MJ, Ugarte M, Porrero MC, Alonso JM, Borge C, Vadillo S, Dominguez L, Quesada A, Piriz S (2013) Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans. Foodborne Pathog Dis 10(2):171–176.  https://doi.org/10.1089/fpd.2012.1288 CrossRefPubMedGoogle Scholar
  2. 2.
    Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, Cieslak PR, Deneen VC, Tauxe RV, For the Emerging Infections Program FoodNet Working G (2004) FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 38(Supplement_3):S127–S134.  https://doi.org/10.1086/381578 CrossRefPubMedGoogle Scholar
  3. 3.
    Wong VK, Baker S, Pickard D, Page AJ, Feasey NA, Dougan G, Holt KE (2016) The emergence and intercontinental spread of a multidrug-resistant clade of typhoid agent Salmonella enterica serovar Typhi. Lancet 387:S10.  https://doi.org/10.1016/S0140-6736(16)00397-4 CrossRefGoogle Scholar
  4. 4.
    Lang LH (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131(5):1370.  https://doi.org/10.1053/j.gastro.2006.10.012 CrossRefPubMedGoogle Scholar
  5. 5.
    Zinno P, Devirgiliis C, Ercolini D, Ongeng D, Mauriello G (2014) Bacteriophage P22 to challenge Salmonella in foods. Int J Food Microbiol 191:69–74.  https://doi.org/10.1016/j.ijfoodmicro.2014.08.037 CrossRefPubMedGoogle Scholar
  6. 6.
    Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses.  https://doi.org/10.3390/v9040070 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahmad AA, Elhalag KM, Addy HS, Nasr-Eldin MA, Hussien AS, Huang Q (2018) Sequencing, genome analysis and host range of a novel Ralstonia phage, RsoP1EGY, isolated in Egypt. Arch Virol 163(8):2271–2274.  https://doi.org/10.1007/s00705-018-3844-4 CrossRefPubMedGoogle Scholar
  8. 8.
    Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, Lobocka M, Kropinski AM, Azeredo J (2017) Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Sci Rep 7:46157.  https://doi.org/10.1038/srep46157 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1(1):18.  https://doi.org/10.1186/2047-217x-1-18 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33(Web Server issue):W451–W454.  https://doi.org/10.1093/nar/gki487 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  12. 12.
    Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics (Oxford, England) 27(7):1009–1010.  https://doi.org/10.1093/bioinformatics/btr039 CrossRefGoogle Scholar
  13. 13.
    Adriaenssens EM, Ackermann HW, Anany H, Blasdel B, Connerton IF, Goulding D, Griffiths MW, Hooton SP, Kutter EM, Kropinski AM, Lee JH, Maes M, Pickard D, Ryu S, Sepehrizadeh Z, Shahrbabak SS, Toribio AL, Lavigne R (2012) A suggested new bacteriophage genus: “Viunalikevirus”. Arch Virol 157(10):2035–2046.  https://doi.org/10.1007/s00705-012-1360-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Day A, Ahn J, Salmond GPC (2018) Jumbo bacteriophages are represented within an increasing diversity of environmental viruses infecting the emerging phytopathogen, Dickeya solani. Front Microbiol.  https://doi.org/10.3389/fmicb.2018.02169 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Ling Chen
    • 1
  • Guoye Guan
    • 1
  • Quan Liu
    • 2
  • Shengjian Yuan
    • 1
    • 3
  • Tingwei Yan
    • 4
  • Linyu Tian
    • 4
  • Yan Zhou
    • 1
    • 3
  • Yixuan Zhao
    • 5
  • Yingfei Ma
    • 1
  • Ting Wei
    • 1
    Email author
  • Xiongfei Fu
    • 1
    Email author
  1. 1.Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
  2. 2.College of Life Science and OceanographyShenzhen UniversityShenzhenChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.College of Life Science and TechnologyJinan UniversityGuangzhouChina
  5. 5.Shenzhen College of International EducationShenzhenChina

Personalised recommendations