Skip to main content
Log in

Spatial distribution of orally administered viral fusolin protein in the insect midgut and possible synergism between fusolin and digestive proteases to disrupt the midgut peritrophic matrix

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Oral inoculation of entomopoxvirus spindles, microstructures composed of fusolin protein, causes disruption of the peritrophic matrix (PM), a physical barrier against microbe infection, in the insect midgut. Although the atomic structure of fusolin has been determined, little has been directly elucidated of the mechanism of disruption of the PM. In the present study, we first performed an immunohistochemical examination to determine whether fusolin acts on the PM directly or indirectly in the midgut of Bombyx mori larvae that were inoculated with spindles of Anomala cuprea entomopoxvirus. This revealed that the PM, rather than the midgut cells, was the attachment site for fusolin. Fusolin broadly attached to the PM from the anterior to the posterior region, both to its ectoperitrophic and endoperitrophic surfaces and within the PM. These results likely explain why the whole of the PM is rapidly disintegrated. Second, we administered protease inhibitors mixed with spindles and observed decreased midgut protease activity and reduced disruption of the PM. This suggests that midgut protease(s) is also positively involved in PM disruption. Based on the present results, we propose an overall mechanism for the disruption of the PM by administration of fusolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arif BM (1995) Recent advances in the molecular biology of entomopoxviruses. J Gen Virol 76:1–13

    Article  PubMed  CAS  Google Scholar 

  2. Boucias DG, Pendland JC (1988) Principles of insect pathology. Kluwer, Norwell

    Google Scholar 

  3. Chakraborty M, Narayanan K, Sivaprakash MK (2004) In vivo enhancement of nucleopolyhedrovirus of oriental armyworm, Mythimna separata using spindles from Helicoverpa armigera entomopoxvirus. Indian J Exp Biol 42:121–123

    PubMed  CAS  Google Scholar 

  4. Chiu E, Hijnen M, Bunker R, Boudes M, Rajendran C, Aizel K, Olieric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK, Bergoin M, Metcalf P, Coulibaly F (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci USA 112:3973–3978

    Article  PubMed  CAS  Google Scholar 

  5. Derksen ACG, Granados RR (1988) Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology 167:242–250

    Article  PubMed  CAS  Google Scholar 

  6. Din N, Damude HG, Gilkes NR, Miller RC Jr, Warren RAJ, Kilburn DG (1994) C1-Cx revisited: Intramolecular synergism in a cellulase. Proc Natl Acad Sci USA 91:11383–11387

    Article  PubMed  CAS  Google Scholar 

  7. Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulose. Nat Biotechnol 9:1096–1099

    Article  CAS  Google Scholar 

  8. Furuta Y, Mitsuhashi W, Kobayashi J, Hayasaka S, Imanishi S, Chinzei Y, Sato M (2001) Peroral infectivity of non-occluded viruses of Bombyx mori nucleopolyhedrovirus and polyhedrin-negative recombinant baculoviruses to silkworm larvae is drastically enhanced when administered with Anomala cuprea entomopoxvirus spindles. J Gen Virol 82:307–312

    Article  PubMed  CAS  Google Scholar 

  9. Harper MS, Granados RR (1999) Peritrophic membrane structure and formation of larval Trichoplusia ni with an investigation on the secretion patterns of a PM mucin. Tissue Cell 31:202–211

    Article  PubMed  CAS  Google Scholar 

  10. Harper MS, Hopkins TL (1997) Peritrophic membrane structure and secretion in European corn borer larvae (Ostrinia nubilalis). Tissue Cell 29:463–475

    Article  PubMed  CAS  Google Scholar 

  11. Hopkins TL, Harper MS (2001) Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 47:100–109

    Article  PubMed  CAS  Google Scholar 

  12. Hukuhara T, Hayakawa T, Wijonarko A (2001) A bacterially produced virus enhancing factor from an entomopoxvirus enhances nucleopolyhedrovirus infection in armyworm larvae. J Invertebr Pathol 78:25–30

    Article  PubMed  CAS  Google Scholar 

  13. Kawakita H, Miyamoto K, Wada S, Mitsuhashi W (2016) Analysis of the ultrastructure and formation pattern of the peritrophic membrane in the cupreous chafer, Anomala cuprea (Coleoptera: Scarabaeidae). Appl Entomol Zool 51:133–142

    Article  CAS  Google Scholar 

  14. Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  PubMed  CAS  Google Scholar 

  15. Li X, Barrett J, Pang A, Klose RJ, Krell PJ, Arif BM (2000) Characterization of an overexpressed spindle protein during a baculovirus infection. Virology 268:56–67

    Article  PubMed  CAS  Google Scholar 

  16. Liu X, Ma X, Lei C, Xiao Y, Zhang Z, Sun X (2011) Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis. Arch Virol 156:1707–1715

    Article  PubMed  CAS  Google Scholar 

  17. Mitsuhashi W, Asano S, Miyamoto K, Wada S (2014) Further research on the biological function of inclusion bodies of Anomala cuprea entomopoxvirus, with special reference to effect on the insecticidal activity of a Bacillus thuringiensis formulation. Pest Manag Sci 70:46–54

    Article  PubMed  CAS  Google Scholar 

  18. Mitsuhashi W, Furuta Y, Sato M (1998) The spindles of an entomopoxvirus of Coleoptera (Anomala cuprea) strongly enhance the infectivity of a nucleopolyhedrovirus in Lepidoptera (Bombyx mori). J Invertebr Pathol 71:186–188

    Article  PubMed  CAS  Google Scholar 

  19. Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, Wada S (2007) Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J Virol 81:4235–4243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mitsuhashi W, Miyamoto K (2003) Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol 82:34–40

    Article  PubMed  CAS  Google Scholar 

  21. Mitsuhashi W, Miyamoto K, Wada S (2014) The complete genome sequence of the Alphaentomopoxvirus Anomala cuprea entomopoxvirus, including its terminal hairpin loop sequences, suggests a potentially unique mode of apoptosis inhibition and mode of DNA replication. Virology 452–453:95–116

    Article  PubMed  CAS  Google Scholar 

  22. Mitsuhashi W, Sato M, Hirai Y (2000) Involvement of spindles of an entomopoxvirus (EPV) in infectivity of the EPVs to their host insect. Arch Virol 145:1465–1471

    Article  PubMed  CAS  Google Scholar 

  23. Mukawa S, Nakai M, Okuno S, Takatsuka J, Kunimi Y (2003) Nucleopolyhedrovirus enhancement by a fluorescent brightener in Mythimna separata (Lepidoptera: Noctuidae). Appl Entomol Zool 38:87–96

    Article  Google Scholar 

  24. Peters W (1992) Peritrophic membranes. Springer, Berlin

    Book  Google Scholar 

  25. Shapiro M, Robertson JL (1992) Enhancement of gypsy moth (Lepidoptera: Lymantriidae) baculovirus activity by optical brighteners. J Econ Entomol 85:1120–1124

    Article  CAS  Google Scholar 

  26. Takemoto Y, Mitsuhashi W, Murakami R, Konishi H, Miyamoto K (2008) The N-terminal region of an entomopoxvirus fusolin is essential for the enhancement of peroral infection, whereas the C-terminal region is eliminated in digestive juice. J Virol 82:12406–12415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497

    Article  PubMed  CAS  Google Scholar 

  28. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  PubMed  CAS  Google Scholar 

  29. Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin J-G, Cathala B (2017) Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep 7:40262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang P, Granados RR (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci USA 94:6977–6982

    Article  PubMed  CAS  Google Scholar 

  31. Wang P, Granados R (2001) Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47:110–118

    Article  PubMed  CAS  Google Scholar 

  32. Wijonarko A, Hukuhara T (1998) Detection of a virus enhancing factor in the spheroid, spindle, and virion of an entomopoxvirus. J Invertebr Pathol 72:82–86

    Article  PubMed  CAS  Google Scholar 

  33. Yaman M, Acar KF, Radek R (2015) A nucleopolyhedrovirus from the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). Appl Entomol Zool 50:355–359

    Article  CAS  Google Scholar 

  34. Yamazaki H (1955) Studies on the peritrophic membrane of Lepidopterous insects. Bull Nagano Seric Exp Stn 10:269–335 (in Japanese with English summary)

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Takumi Kayukawa and Ms. Chihiro Ueno at our institute for their support with some of the experiments. This work was supported in part by JSPS KAKENHI 26450474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Mitsuhashi.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Handling Editor: T. K. Frey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsuhashi, W., Shimura, S., Miyamoto, K. et al. Spatial distribution of orally administered viral fusolin protein in the insect midgut and possible synergism between fusolin and digestive proteases to disrupt the midgut peritrophic matrix. Arch Virol 164, 17–25 (2019). https://doi.org/10.1007/s00705-018-4013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4013-5

Navigation