Skip to main content
Log in

Recombination of host cell mRNA with the Asia 1 foot-and-mouth disease virus genome in cell suspension culture

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Foot-and-mouth disease virus (FMDV) exhibits high mutation rates during replication. In this study, an isolate of FMDV serotype Asia-1 was serially passaged in a BHK-21 cell monolayer and then adapted to serum-free BHK-21 cell suspension culture to produce a seed virus for production of an inactivated vaccine. Analysis of the sequence encoding the structural proteins of the virus at various passages showed the presence of overlapping peaks in sequencing electropherograms after nucleotide 619 of VP1 in viruses recovered from the fourth passage in suspension culture, suggesting the possible introduction of an insertion or deletion into this portion of the viral genome of our seed virus stock. To evaluate this phenomenon, a virus designated “Vac-Asia1-VDLV”, was isolated by plaque purification from the tenth passage in suspension culture. Sequencing results showed that a 12-nt-long exogenous sequence was inserted into the 3’ end of the VP1 coding region at the position where the original overlapping peaks were identified. Analysis of the host cell transcriptome showed that the 12-nt sequence was identical to a highly expressed sequence in BHK-21 cells, strongly suggesting that recombination between the FMDV genome and host cell mRNA produced the recombinant virus. A growth curve showed that the virus with the 12-nt insertion reached a peak earlier than the parental strain and that this virus had acquired the ability to bind to the cell surface by a mechanism that was not dependent on integrin or the heparan sulfate receptor. This novel pathogen-host cell recombination event is discussed in terms of the mechanism of viral RNA replication and the phenotypic constraints of FMDV biology and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jamal SM, Belsham GJ (2013) Foot-and-mouth disease: past, present and future. Vet Res 44:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Saraiva V (2004) Foot-and-mouth disease in the Americas: epidemiology and ecologic changes affecting distribution. Ann N Y Acad Sci 1026:73–78

    Article  PubMed  Google Scholar 

  3. Pacheco JM, Mason PW (2010) Evaluation of infectivity and transmission of different Asian foot-and-mouth disease viruses in swine. J Vet Sci 11:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Q, Li D, Liu X, Liu Z, Cai X, Wu G, Qi S, Yang S, Yan X, Shang Y, He J, Ma J, Li J, Ma W, Han R, Liu X, Zhang J, Xie Q, Zhang Z (2008) Experimental studies with foot-and-mouth disease virus type Asia-1, responsible for the 2005 epidemic in China. Res Vet Sci 85:368–371

    Article  PubMed  Google Scholar 

  5. Subramaniam S, Mohapatra JK, Das B, Sanyal A, Pattnaik B (2015) Genetic and antigenic analysis of foot-and-mouth disease virus serotype O responsible for outbreaks in India during 2013. Infect Genet Evol 30:59–64

    Article  PubMed  CAS  Google Scholar 

  6. Saraiva V (2003) Vaccines and foot-and-mouth disease eradication in South America. Dev Biol (Basel) 114:67–77

    CAS  Google Scholar 

  7. Malirat V, de Barros JJ, Bergmann IE, Campos Rde M, Neitzert E, da Costa EV, da Silva EE, Falczuk AJ, Pinheiro DS, de Vergara N, Cirvera JL, Maradei E, Di Landro R (2007) Phylogenetic analysis of foot-and-mouth disease virus type O re-emerging in free areas of South America. Virus Res 124:22–28

    Article  PubMed  CAS  Google Scholar 

  8. Cox SJ, Parida S, Voyce C, Reid SM, Hamblin PA, Hutchings G, Paton DJ, Barnett PV (2007) Further evaluation of higher potency vaccines for early protection of cattle against FMDV direct contact challenge. Vaccine 25:7687–7695

    Article  PubMed  CAS  Google Scholar 

  9. Amadori M, Berneri C, Archetti IL (1994) Immunogenicity of foot-and-mouth disease virus grown in BHK-21 suspension cells. Correlation with cell ploidy alterations and abnormal expression of the alpha 5 beta 1 integrin. Vaccine 12:159–166

    Article  PubMed  CAS  Google Scholar 

  10. Kamolsiripichaiporn S, Subharat S, Udon R, Thongtha P, Nuanualsuwan S (2007) Thermal inactivation of foot-and-mouth disease viruses in suspension. Appl Environ Microbiol 73:7177–7184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bai X, Bao H, Li P, Wei W, Zhang M, Sun P, Cao Y, Lu Z, Fu Y, Xie B, Chen Y, Li D, Luo J, Liu Z (2014) Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor. Virol J 11:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhao Q, Pacheco JM, Mason PW (2003) Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J Virol 77:3269–3280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li P, Lu Z, Bao H, Li D, King DP, Sun P, Bai X, Cao W, Gubbins S, Chen Y, Xie B, Guo J, Yin H, Liu Z (2011) In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites. BMC Microbiol 11:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Reeve R, Blignaut B, Esterhuysen JJ, Opperman P, Matthews L, Fry EE, de Beer TA, Theron J, Rieder E, Vosloo W, O’Neill HG, Haydon DT, Maree FF (2010) Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus. PLoS Comput Biol 6:e1001027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jackson AL, O’Neill H, Maree F, Blignaut B, Carrillo C, Rodriguez L, Haydon DT (2007) Mosaic structure of foot-and-mouth disease virus genomes. J Gen Virol 88:487–492

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence P, Pacheco JM, Uddowla S, Hollister J, Kotecha A, Fry E, Rieder E (2013) Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis. Virology 436:150–161

    Article  PubMed  CAS  Google Scholar 

  17. Yang B, Yang F, Zhang Y, Liu H, Jin Y, Cao W, Zhu Z, Zheng H, Yin H (2016) The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses. Virus Res 213:246–254

    Article  PubMed  CAS  Google Scholar 

  18. Seago J, Jackson T, Doel C, Fry E, Stuart D, Harmsen MM, Charleston B, Juleff N (2012) Characterization of epitope-tagged foot-and-mouth disease virus. J Gen Virol 93:2371–2381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. van Rensburg HG, Henry TM, Mason PW (2004) Studies of genetically defined chimeras of a European type A virus and a South African Territories type 2 virus reveal growth determinants for foot-and-mouth disease virus. J Gen Virol 85:61–68

    Article  PubMed  CAS  Google Scholar 

  20. OIE (2015) Foot and mouth disease, Chap 215. In: OIE (ed) Manual of diagnostic tests and vaccines for terrestrial animals, 2012 ed. OIE, Paris

  21. Johnson KC, Yongky A, Vishwanathan N, Jacob NM, Jayapal KP, Goudar CT, Karypis G, Hu WS (2014) Exploring the transcriptome space of a recombinant BHK cell line through next generation sequencing. Biotechnol Bioeng 111:770–781

    Article  PubMed  CAS  Google Scholar 

  22. Lee KN, Oem JK, Park JH, Kim SM, Lee SY, Tserendorj S, Sodnomdarjaa R, Joo YS, Kim H (2009) Evidence of recombination in a new isolate of foot-and-mouth disease virus serotype Asia 1. Virus Res 139:117–121

    Article  PubMed  CAS  Google Scholar 

  23. Lewis-Rogers N, McClellan DA, Crandall KA (2008) The evolution of foot-and-mouth disease virus: impacts of recombination and selection. Infect Genet Evol 8:786–798

    Article  PubMed  CAS  Google Scholar 

  24. Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordaux R, Herniou EA (2016) Continuous influx of genetic material from host to virus populations. PLoS Genet 12:e1005838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Filee J, Chandler M (2010) Gene exchange and the origin of giant viruses. Intervirology 53:354–361

    Article  PubMed  CAS  Google Scholar 

  26. Lesbats P, Engelman AN, Cherepanov P (2016) Retroviral DNA integration. Chem Rev 116:12730–12757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Aswad A, Katzourakis A (2015) Convergent capture of retroviral superantigens by mammalian herpesviruses. Nat Commun 6:8299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Khatchikian D, Orlich M, Rott R (1989) Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340(6229):156–157

    Article  PubMed  CAS  Google Scholar 

  29. Charini WA, Todd S, Gutman GA, Semler BL (1994) Transduction of a human RNA sequence by poliovirus. J Virol 68:6547–6552

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Urbanowicz A, Alejska M, Formanowicz P, Blazewicz J, Figlerowicz M, Bujarski JJ (2005) Homologous crossovers among molecules of brome mosaic bromovirus RNA1 or RNA2 segments in vivo. J Virol 79:5732–5742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nagy PD, Bujarski JJ (1997) Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus. J. Virol 71:3799–3810

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Rai DK, Segundo FD, Schafer E, Burrage TG, Rodriguez LL, de Los Santos T, Hoeprich PD, Rieder E (2016) Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity. Virology 495:136–147

    Article  PubMed  CAS  Google Scholar 

  33. Bai X, Bao H, Li P, Sun P, Kuang W, Cao Y, Lu Z, Liu Z, Liu X (2010) Genetic characterization of the cell-adapted PanAsia strain of foot-and-mouth disease virus O/Fujian/CHA/5/99 isolated from swine. Virol J 7:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lawrence P, LaRocco M, Baxt B, Rieder E (2013) Examination of soluble integrin resistant mutants of foot-and-mouth disease virus. Virol J 10:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Podnar J, Deiderick H, Huerta G, Hunicke-Smith S (2014) Next-generation sequencing RNA-seq library construction. Curr Protoc Mollar Biol/edited by Frederick M. Ausubel [et al.] 106:421–419

  36. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with trinity. Natprotocols 8:1494–1512

    CAS  Google Scholar 

  38. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18:1509–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank all the technical staffs of Tecon Co., LTD and China Animal Husbandry Industry Co., LTD for their help in these studies. We thank Yingju Xia of the Department of Reference Material at China Institute of Veterinary Drug Control for critical reading of the manuscript.

Funding

This study was funded by National Key Research and Development Program of China (No. 2016YFD0501500) and the Special Fund for Agro-Scientific Research in the Public Interest (201303046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfei Zhu or Qizu Zhao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Tim Skern.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Zhu, Y., Bao, H. et al. Recombination of host cell mRNA with the Asia 1 foot-and-mouth disease virus genome in cell suspension culture. Arch Virol 164, 41–50 (2019). https://doi.org/10.1007/s00705-018-4008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4008-2

Navigation