Abstract
Psychrotrophic gram-negative Pseudomonas spp. represent a serious problem in the dairy industry as they can cause spoilage of milk and dairy products. Bacteriophages have moved into focus as promising biocontrol agents for such food spoilage bacteria. The virulent Siphoviridae phage PMBT14 was isolated on a mutant variant of P. fluorescens DSM 50090 challenged with an unrelated virulent P. fluorescens DSM 50090 Podoviridae phage (i.e., mutant strain DSM 50090R). PMBT14 has a 47,820-bp dsDNA genome with 76 predicted open reading frames (ORFs). Its genome shows no significant sequence similarity to that of known phages, suggesting that PMBT14 represents a novel phage. Phage PMBT14 could be a promising biocontrol agent for P. fluorescens in milk or dairy foods.


Similar content being viewed by others
References
Samaržija D, Zamberlin Š, Pogačić T (2012) Psychrotrophic bacteria and milk quality. Mljekarstvo 2:77–95
Nollet LML, Toldrá F (2009) Handbook of dairy foods analysis. CRC Press, Boca Raton
von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2015) Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 211:57–65
von Neubeck M, Huptas C, Gluck C, Krewinkel M, Stoeckel M, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2017) Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int J Syst Evol Microbiol 67:1656–1664
Ternstrom A, Lindberg AM, Molin G (1993) Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference to Pseudomonas and Bacillus. J Appl Bacteriol 75:25–34
Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 69:130–138
Wiedmann M, Weilmeier D, Dineen SS, Ralyea R, Boor KJ (2000) Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl Environ Microbiol 66:2085–2095
Martins ML, de Araujo EF, Mantovani HC, Moraes CA, Vanetti MCD (2005) Detection of the apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 102:203–211
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Borodovsky M, Lomsadze A (2014) Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr Protoc Microbiol 32:4.5.1–4.5.17
Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182
McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618
Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644
Acknowledgements
We kindly thank Angela Back and Gesa Gehrke for technical assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None of the authors has any conflict of interest to declare.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Handling Editor: Johannes Wittmann.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Koberg, S., Gieschler, S., Brinks, E. et al. Genome sequence of the novel virulent bacteriophage PMBT14 with lytic activity against Pseudomonas fluorescens DSM 50090R. Arch Virol 163, 2575–2577 (2018). https://doi.org/10.1007/s00705-018-3882-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00705-018-3882-y


