Skip to main content
Log in

Characterization of a novel lytic podovirus O4 of Pseudomonas aeruginosa

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Phage O4 of Pseudomonas aeruginosa was previously visualized as a short-tailed virus using a transmission electron microscope. In this work, the O4 genome was characterized to be a linear dsDNA molecule comprising 50509 bp with 76 predicted genes located in five clusters. Mass spectrometry showed that the O4 virion contains 6 putative structural proteins, 2 putative enzymes, and 7 hypothetical proteins. By analyzing a Tn5G transposon mutation library, eight genes, wbpR, wbpV, wbpO, wbpT, wbpS, wbpL,  galU, and wzy, were identified and confirmed responsible for the phage-resistant phenotype; all of them are related to the synthesis of O-specific antigen (OSA) of lipopolysaccharide (LPS), indicating that OSA is the receptor for the adsorption of phage O4. Comparative genomic analysis revealed that the phage O4 genome shares little similarity to any known podovirus, indicating that phage O4 is classifiable as a novel member of the Podoviridae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    Article  PubMed  CAS  Google Scholar 

  2. Adhya S, Merril CR, Biswas B (2014) Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harbor Perspect Med 4:a012518

    Article  CAS  Google Scholar 

  3. Belanger M, Burrows LL, Lam JS (1999) Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology 145(Pt 12):3505–3521

    Article  PubMed  CAS  Google Scholar 

  4. Burroughs AM, Iyer LM, Aravind L (2007) Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn 3:48–65

    Article  PubMed  CAS  Google Scholar 

  5. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783

    Article  PubMed  CAS  Google Scholar 

  6. Cui X, You J, Sun L, Yang X, Zhang T, Huang K, Pan X, Zhang F, He Y, Yang H (2016) Characterization of Pseudomonas aeruginosa Phage C11 and identification of host genes required for virion maturation. Sci Rep 6:39130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Delbruck M (1940) The growth of bacteriophage and lysis of the host. J Gen Physiol 23:643–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Garbe J, Bunk B, Rohde M, Schobert M (2011) Sequencing and characterization of Pseudomonas aeruginosa phage JG004. BMC Microbiol 11:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M, Jensen GJ, Wright ER (2011) Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci USA 108:9963–9968

    Article  PubMed  Google Scholar 

  10. Hirsch EB, Tam VH (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharm Outcomes Res 10:441–451

    Google Scholar 

  11. Hooton SP, Timms AR, Rowsell J, Wilson R, Connerton IF (2011) Salmonella Typhimurium-specific bacteriophage PhiSH19 and the origins of species specificity in the Vi01-like phage family. Virol J 8:498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Knirel YA, Bystrova OV, Kocharova NA, Zahringer U, Pier GB (2006) Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa. J Endotoxin Res 12:324–336

    PubMed  CAS  Google Scholar 

  13. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  PubMed  CAS  Google Scholar 

  14. Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2006) Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 188:1184–1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lam JS, Taylor VL, Islam ST, Hao Y, Kocincova D (2011) Genetic and functional diversity of Pseudomonas aeruginosa Lipopolysaccharide. Front Microbiol 2:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lavigne R, Noben JP, Hertveldt K, Ceyssens PJ, Briers Y, Dumont D, Roucourt B, Krylov VN, Mesyanzhinov VV, Robben J, Volckaert G (2006) The structural proteome of Pseudomonas aeruginosa bacteriophage phiKMV. Microbiology 152:529–534

    Article  PubMed  CAS  Google Scholar 

  17. Le S, He X, Tan Y, Huang G, Zhang L, Lux R, Shi W, Hu F (2013) Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One 8:e68562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li L, Yang H, Lin S, Jia S (2010) Classification of 17 newly isolated virulent bacteriophages of Pseudomonas aeruginosa. Can J Microbiol 56:925–933

    Article  PubMed  CAS  Google Scholar 

  19. Li L, Pan X, Cui X, Sun Q, Yang X, Yang H (2016) Characterization of Pseudomonas aeruginosa phage K5 genome and identification of its receptor related genes. J Basic Microbiol 56:1344–1353

    Article  PubMed  CAS  Google Scholar 

  20. Lu S, Le S, Tan Y, Zhu J, Li M, Rao X, Zou L, Li S, Wang J, Jin X, Huang G, Zhang L, Zhao X, Hu F (2013) Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS One 8:e62933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pan X, Cui X, Zhang F, He Y, Li L, Yang H (2016) Genetic Evidence for O-specific antigen as receptor of Pseudomonas aeruginosa phage K8 and Its genomic analysis. Front Microbiol 7:252

    PubMed  PubMed Central  Google Scholar 

  22. Pickering TJ, Garforth SJ, Thorpe SJ, Sayers JR, Grasby JA (1999) A single cleavage assay for T5 5’–>3’ exonuclease: determination of the catalytic parameters forwild-type and mutant proteins. Nucl Acids Res 27:730–735

    Article  PubMed  CAS  Google Scholar 

  23. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Ann Rev Genet 42:647–681

    Article  PubMed  CAS  Google Scholar 

  24. Reardon S (2014) Phage therapy gets revitalized. Nature 510:15–16

    Article  PubMed  CAS  Google Scholar 

  25. Sambrook J (2001) Molecular cloning: a laboratory manual/Joseph Sambrook, David W. Russell. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

  26. Schweizer HP (1991) Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–121

    Article  PubMed  CAS  Google Scholar 

  27. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  28. Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  PubMed  CAS  Google Scholar 

  29. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L (2003) Database resources of the National Center for Biotechnology. Nucl Acids Res 31:28–33

    Article  PubMed  CAS  Google Scholar 

  30. Xiang Y, Rossmann MG (2011) Structure of bacteriophage ϕ29 head fibers has a supercoiled triple repeating helix-turn-helix motif. Proc Natl Acad Sci 108:4806–4810

    Article  PubMed  Google Scholar 

  31. Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natural Science Foundation of China (Grant No. 31370205 and 30970114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjiang Yang.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: T. K. Frey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Characteristics of phage O4. a: One-step growth curve of PAK infected by phage O4 with an MOI of 0.001. L: latent phase. R: rise phase. P: plateau phase. b: Inhibition effects on the growth of PAK by phage O4 (JPEG 541 kb)

Figure S2

Identification of the O4 termini. a: Schematic diagram of the assembled genome of phage O4. The fragments are the StuI digested fragments projected from the draft genomic sequence. b: Electrophoresis profiles. Lane 1: The genomic DNA of phage O4. Lane 2: The BglII digested DNA. Lane 3: The SnaBI digested DNA. Lane 4: The StuI digested DNA. The predicted 7.5 kb and 3.2 kb were replaced with 6.8 kb and 4.2 kb, respectively. Lane 5-9: the purified StuI fragments of 20.6 kb, 12.6 kb, 6.8 kb, 5.9 kb, and 4.2 kb, respectively. Lane 10: Negative amplification of the 4.2 kb StuI fragment using the primers F2 and R2. Lane 11: Negative amplification of the 6.8 kb StuI fragment using the primers F2 and R2. Lane 12-14: Positive amplifications of the StuI fragments of 20.6 kb, 12.6 kb, and 5.9 kb using the primers F1 and R1, F3 and R3, and F4 and R4, respectively. Lane 15-16: Positive amplification of the 4.2 kb StuI fragment using the primers F5 and R5. Lane 17-18: Positive amplification of the 6.8 kb StuI fragment using the primers F6 and R6. c: Schematic diagram of the curated genome. The blue arrows stand for primers used in inverse PCR for analysis of the StuI fragments ends (JPEG 1459 kb)

Figure S3

Characterization of the phage-resistant mutants. a: Relative adsorption rates of the phage-resistant mutants. The parent strain PAK was used as a control. b: Complementation of the phage-resistant mutants with the target genes. The upper panel showed the spotting results of the strains carrying the vector pUCP18. The lower panel showed the spotting results of the strains carrying the corresponding target genes, respectively (JPEG 1839 kb)

Supplementary material 4 (DOCX 19 kb)

Supplementary material 5 (DOCX 14 kb)

Supplementary material 6 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Huang, K., Yang, X. et al. Characterization of a novel lytic podovirus O4 of Pseudomonas aeruginosa. Arch Virol 163, 2377–2383 (2018). https://doi.org/10.1007/s00705-018-3866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3866-y

Navigation