Skip to main content
Log in

Unveiling the complete genome sequence of clerodendrum chlorotic spot virus, a putative dichorhavirus infecting ornamental plants

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The genus Dichorhavirus includes plant-infecting rhabdoviruses with bisegmented genomes that are horizontally transmitted by false spider mites of the genus Brevipalpus. The complete genome sequences of three isolates of the putative dichorhavirus clerodendrum chlorotic spot virus were determined using next-generation sequencing (Illumina) and traditional RT-PCR. Their genome organization, sequence similarity and phylogenetic relationship to other viruses, and transmissibility by Brevipalpus yothersi mites support the assignment of these viruses to a new species of dichorhavirus, as suggested previously. New data are discussed stressing the reliability of the current rules for species demarcation and taxonomic status criteria within the genus Dichorhavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Dietzgen RG, Kuhn JH, Clawson AN et al (2014) Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Arch Virol 159:607–619. https://doi.org/10.1007/s00705-013-1834-0

    Article  PubMed  CAS  Google Scholar 

  2. Kitajima EW, Kubo KS, Ferreira PTO et al (2008) Chlorotic spots on Clerodendrum, a disease caused by a nuclear type of Brevipalpus (Acari: Tenuipalpidae) transmitted virus. Sci Agric 65:36–49. https://doi.org/10.1590/S0103-90162008000100006

    Article  Google Scholar 

  3. Kitajima EW, Chagas CM, Rodrigues JCV (2003) Brevipalpus-transmitted plant virus and virus-like diseases: cytopathology and some recent cases. Exp Appl Acarol 30:135–160

    Article  PubMed  CAS  Google Scholar 

  4. Kondo H, Maeda T, Shirako Y, Tamada T (2006) Orchid fleck virus is a rhabdovirus with an unusual bipartite genome. J Gen Virol 87:2413–2421. https://doi.org/10.1099/vir.0.81811-0

    Article  PubMed  CAS  Google Scholar 

  5. Ramalho TO, Figueira AR, Sotero AJ et al (2014) Characterization of Coffee ringspot virus-Lavras: a model for an emerging threat to coffee production and quality. Virology 464–465:385–396. https://doi.org/10.1016/j.virol.2014.07.031

    Article  PubMed  CAS  Google Scholar 

  6. Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O et al (2017) Citrus leprosis virus N: a new dichorhavirus causing citrus leprosis disease. Phytopathology 107:963–976. https://doi.org/10.1094/PHYTO-02-17-0042-R

    Article  PubMed  Google Scholar 

  7. Chabi-Jesus C, Ramos-Gonzalez P, Tassi AD et al (2018) Identification and characterization of citrus chlorotic spot virus, a new dichorhavirus associated with citrus leprosis-like symptoms. Plant Dis. https://doi.org/10.1094/PDIS-09-17-1425-RE

    Article  Google Scholar 

  8. ICTV 10th Report. Genus: Dichorhavirus–RhabdoviridaeMononegavirales. https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/mononegavirales/w/rhabdoviridae/791/genus-dichorhavirus. Accessed 16 Feb 2018

  9. Dietzgen RG, Kondo H, Goodin MM et al (2017) The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170. https://doi.org/10.1016/j.virusres.2016.10.010

    Article  PubMed  CAS  Google Scholar 

  10. Kondo H, Maeda T, Tamada T (2003) Orchid fleck virus: Brevipalpus californicus mite transmission, biological properties and genome structure. Exp Appl Acarol 30:215–223

    Article  PubMed  Google Scholar 

  11. Kitajima EW, Chagas CM, Braghini MT et al (2011) Natural infection of several Coffea species and hybrids and Psilanthus ebracteolatus by the coffee ringspot virus (CoRSV). Sci Agric 68:503–507. https://doi.org/10.1590/S0103-90162011000400017

    Article  CAS  Google Scholar 

  12. Ramos-González PL, Sarubbi-Orue H, Gonzales-Segnana L et al (2016) Orchid fleck virus infecting orchids in Paraguay: first report and use of degenerate primers for its detection. J Phytopathol 164:342–347. https://doi.org/10.1111/jph.12420

    Article  CAS  Google Scholar 

  13. Kubo KS, Novelli VM, Bastianel M et al (2011) Detection of Brevipalpus-transmitted viruses in their mite vectors by RT-PCR. Exp Appl Acarol 54:33–39. https://doi.org/10.1007/s10493-011-9425-9

    Article  PubMed  CAS  Google Scholar 

  14. Kubo KS, Stuart RM, Freitas-Astúa J et al (2009) Evaluation of the genetic variability of orchid fleck virus by single-strand conformational polymorphism analysis and nucleotide sequencing of a fragment from the nucleocapsid gene. Arch Virol 154:1009–1014. https://doi.org/10.1007/s00705-009-0395-8

    Article  PubMed  CAS  Google Scholar 

  15. Ramalho TO, Figueira AR, Wang R et al (2016) Detection and survey of coffee ringspot virus in Brazil. Arch Virol 161:335–343. https://doi.org/10.1007/s00705-015-2663-0

    Article  PubMed  CAS  Google Scholar 

  16. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500. https://doi.org/10.1093/nar/gkg500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388. https://doi.org/10.1093/bib/5.4.378

    Article  PubMed  CAS  Google Scholar 

  19. Kondo H, Hirota K, Maruyama K et al (2017) A possible occurrence of genome reassortment among bipartite rhabdoviruses. Virology 508:18–25. https://doi.org/10.1016/j.virol.2017.04.027

    Article  PubMed  CAS  Google Scholar 

  20. Roy A, Stone AL, Shao J et al (2015) Identification and molecular characterization of nuclear Citrus leprosis virus, a member of the proposed Dichorhavirus genus infecting multiple Citrus species in Mexico. Phytopathology 105:564–575. https://doi.org/10.1094/PHYTO-09-14-0245-R

    Article  PubMed  CAS  Google Scholar 

  21. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  22. Talavera G, Castresana J, Kjer K et al (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. https://doi.org/10.1080/10635150701472164

    Article  PubMed  CAS  Google Scholar 

  23. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  25. Tassi AD, Garita-Salazar LC, Amorim L et al (2017) Virus-vector relationship in the Citrus leprosis pathosystem. Exp Appl Acarol 71:227–241. https://doi.org/10.1007/s10493-017-0123-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kitajima EW, Nome CF (1999) Microscopia electrónica em virologia vegetal Métodos para detectar patógenos sistémicos. IFFIVE/INT, Córdoba

    Google Scholar 

  27. Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity (Edinb) 80(Pt 6):742–752

    Article  CAS  Google Scholar 

  28. Rodrigues JCV, Gallo-Meagher M, Ochoa R et al (2004) Mitochondrial DNA and RAPD polymorphisms in the haploid mite Brevipalpus phoenicis (Acari: Tenuipalpidae). Exp Appl Acarol 34:275–290

    Article  PubMed  CAS  Google Scholar 

  29. Beard JJ, Ochoa R, Braswell WE, Bauchan GR (2015) Brevipalpus phoenicis (Geijskes) species complex (Acari: Tenuipalpidae)—a closer look. Zootaxa 3944:1–67

    Article  PubMed  Google Scholar 

  30. Sánchez-Velázquez EJ, Santillán-Galicia MT, Novelli VM et al (2015) Diversity and genetic variation among Brevipalpus populations from Brazil and Mexico. PLoS One 10:e0133861. https://doi.org/10.1371/journal.pone.0133861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Alberti G, Kitajima EW (2014) Anatomy and Fine Structure of Brevipalpus Mites (Tenuipalpidae)—economically important plant-virus vectors. Zoologica 160:1–192

    Google Scholar 

  32. Roy A, Hartung JS, Schneider WL et al (2015) Role bending: Complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology 105:872–884. https://doi.org/10.1094/PHYTO-12-14-0375-FI

    Article  Google Scholar 

  33. Nunes MA, de Carvalho Mineiro JL, Rogero LA et al (2018) First report of Brevipalpus papayensis Baker (Acari: Tenuipalpidae) as vector of Coffee ringspot virus and Citrus leprosis virus C. Plant Dis. https://doi.org/10.1094/PDIS-07-17-1000-PDN

    Article  Google Scholar 

  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. G. Otero-Colina (Colegio de Postgraduados, Texcoco, Mexico) for kindly providing the OFV-citrus cDNA control used in this study.

Funding

This work was partially supported by FAPESP (2014/08458-9, 2016/01960-6 and 2013/25713-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Freitas-Astúa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Stephen John Wylie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

1% agarose gel electrophoresis of RT-PCR products for detection of dichorhaviruses. Each RNA sample was analyzed with seven primer pairs for the detection of known dichorhaviruses as follows: OFV (N gene), OFV and OFV-citrus (degenerate primer pair for the detection of L gene), CiLV-N (N gene), CiCSV (G gene), CoRSV (N and L genes) and ClCSV (L gene). MW, molecular weight marker, 1kb DNA Ladder (Promega, Madison, WI, USA). Lane 1, reverse transcription blank; 2, PCR blank; 3 and 4, leaf asymptomatic areas from ClCSV-infected Clerodendrum sp. plants collected in Piracicaba and São Paulo, respectively; 5, leaf asymptomatic area from a ClCSV-infected Hibiscus rosa-sinensis plant collected in Santa Barbara d’Oeste; 6 and 7, leaf chlorotic area from Clerodendrum sp. plants collected in Piracicaba and São Paulo, respectively; 8, leaf chlorotic area from an H. rosa-sinensis plant collected in Santa Barbara d’Oeste; 9, OFV-infected orchid plant from Piracicaba, SP; 10, OFV-citrus-infected citrus tree, Mexico; 11, CiLV-N-infected citrus tree, Ibiúna, SP; 12, CiCSV-infected citrus tree, Teresina, PI; 13 and 14, CoRSV-infected coffee plant, Limeira, SP; 15, ClCSV-infected Clerodendrum plant 2, Piracicaba, SP (positive control) (DOCX 552 kb)

Supplementary Table 1

Library composition, viral genome coverage, and generated contigs corresponding to the genome of clerodendrum chlorotic spot virus isolates SBO1 and Prb1 obtained by next-generation sequencing from infected Hibiscus rosa-sinensis and Clerodendrum sp. plants (DOCX 16 kb)

Supplementary Table 2

List of primers for the secondary sequencing and RACE (rapid amplification of cDNA ends) of the genome of clerodendrum chlorotic spot virus (ClCSV_Prb1 isolate) (DOCX 43 kb)

Supplementary material 4 (TXT 14 kb)

Supplementary material 5 (TXT 12 kb)

Supplementary material 6 (TXT 14 kb)

Supplementary material 7 (TXT 12 kb)

Supplementary material 8 (TXT 13 kb)

Supplementary material 9 (TXT 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-González, P.L., Chabi-Jesus, C., Banguela-Castillo, A. et al. Unveiling the complete genome sequence of clerodendrum chlorotic spot virus, a putative dichorhavirus infecting ornamental plants. Arch Virol 163, 2519–2524 (2018). https://doi.org/10.1007/s00705-018-3857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3857-z

Navigation