Advertisement

Archives of Virology

, Volume 163, Issue 8, pp 2219–2224 | Cite as

Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017

  • Alexander Nagy
  • Ádám Dán
  • Lenka Černíková
  • Eliška Vitásková
  • Vlastimil Křivda
  • Jitka Horníčková
  • Roman Masopust
  • Kamil Sedlák
Brief Report

Abstract

Here, we present a comprehensive analysis of the H5N8/H5N5 highly pathogenic avian influenza (HPAI) virus strains detected in the Czech Republic during an outbreak in 2017. Network analysis of the H5 Hemagglutinin (HA) from 99% of the outbreak localities suggested that the diversity of the Czech H5N8/H5N5 viruses was influenced by two basic forces: local microevolution and independent incursions. The geographical occurrence of the central node H5 HA sequences revealed three eco-regions, which apparently played an important role in the origin and further spread of the local H5N8/HPAI variants across the country. A plausible explanation for the observed pattern of diversity is also provided.

Notes

Acknowledgements

We would like to thank all of the contributors to the Global Initiative on Sharing All Influenza Data (GISAID) database.

Compliance with ethical standards

Funding

This work was performed in connection with the National surveillance of highly pathogenic avian influenza viruses of the H5N8 and H5N5 subtypes in the Czech Republic in 2017, and was not funded by additional financial sources.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

705_2018_3833_MOESM1_ESM.pdf (310 kb)
Supplementary material 1 (PDF 310 kb)

References

  1. 1.
    Brown I, Mulatti P, Smietanka K et al (2017) Avian influenza overview October 2016–August 2017. EFSA J 15:5018Google Scholar
  2. 2.
    Lee YJ, Kang HM, Lee EK et al (2014) Novel reassortant influenza A(H5N8) viruses, South Korea, 2014. Emerg Infect Dis 20:1087–1089.  https://doi.org/10.3201/eid2006.140233 PubMedPubMedCentralGoogle Scholar
  3. 3.
    de Vries E, Guo H, Dai M et al (2015) Rapid emergence of highly pathogenic avian influenza subtypes from a subtype H5N1 hemagglutinin variant. Emerg Infect Dis 215:842–846.  https://doi.org/10.3201/eid2105.141927 CrossRefGoogle Scholar
  4. 4.
    Global Consortium for H5N8 and Related Influenza Viruses (2016) Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354:213–217.  https://doi.org/10.1126/science.aaf8852 CrossRefGoogle Scholar
  5. 5.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  6. 6.
    Global Initiative on Sharing All Influenza Data. http://platform.gisaid.org/epi3/frontend#61285e. Accessed 5 Jan 2018
  7. 7.
    Savić V (2017) Novel reassortant clade 2.3.4.4 avian influenza A(H5N5) virus in wild birds and poultry, Croatia, 2016–2017. Vet Archiv 87:377–396Google Scholar
  8. 8.
    Fusaro A, Monne I, Mulatti P et al (2017) Genetic diversity of highly pathogenic avian influenza A(H5N8/H5N5) viruses in Italy, 2016–17. Emerg Infect Dis 23:1543–1547.  https://doi.org/10.3201/eid2309.170539 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beerens N, Heutink R, Bergervoet SA et al (2017) Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, The Netherlands, 2016. Emerg Infect Dis 23:1974–1981.  https://doi.org/10.3201/eid2312.171062 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pohlmann A, Starick E, Grund C et al (2018) Swarm incursions of reassortants of highly pathogenic avian influenza virus strains H5N8 and H5N5, clade 2.3.4.4b, Germany, winter 2016/17. Sci Rep 8:15.  https://doi.org/10.1038/s41598-017-16936-8 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sengupta R, Rosenshein L, Gilbert M et al (2007) Ecoregional dominance in spatial distribution of avian influenza (H5N1) outbreaks. Emerg Infect Dis 13:1269–1277CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bevins SN, Pedersen K, Lutman MW et al (2014) Large-Scale Avian Influenza Surveillance in Wild Birds throughout the United States. PLoS One 9:e104360.  https://doi.org/10.1371/journal.pone.0104360 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krauss S, Stallknecht DE, Negovetich NJ et al (2010) Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc Biol Sci 277:3373–3379.  https://doi.org/10.1098/rspb.2010.1090 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pfeiffer DU, Otte MJ, Roland-Holst D et al (2011) Implications of global and regional patterns of highly pathogenic avian influenza virus H5N1 clades for risk management. Vet J 190:309–316.  https://doi.org/10.1016/j.tvjl.2010.12.022 CrossRefPubMedGoogle Scholar
  15. 15.
    Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  16. 16.
    Wagner A (2014) A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin. Proc Biol Sci 281:20132763.  https://doi.org/10.1098/rspb.2013.2763 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    BirdLife International (2018) Important Bird Areas factsheet: Trebonsko (Trebon region). http://www.birdlife.org on 29/01/2018. Accessed 31 Jan 2018
  18. 18.
    Nagy A, Cerníková L, Jiřincová H et al (2014) Local-scale diversity and between-year “frozen evolution” of avian influenza A viruses in nature. PLoS One 9:e103053.  https://doi.org/10.1371/journal.pone.0103053 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nagy A, Černíková L, Křivda V et al (2012) Digital genotyping of avian influenza viruses of H7 subtype detected in central Europe in 2007–2011. Virus Res 165:126–133.  https://doi.org/10.1016/j.virusres.2012.02.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Nagy A, Vostinakova V, Pindova Z et al (2009) Molecular and phylogenetic analysis of the H5N1 avian influenza virus caused the first highly pathogenic avian influenza outbreak in poultry in the Czech Republic in 2007. Vet Microbiol 133:257–263.  https://doi.org/10.1016/j.vetmic.2008.07.013 CrossRefPubMedGoogle Scholar
  21. 21.
    Musilová Z, Musil P, Zouhar J et al (2015) Long-term trends, total numbers and species richness of increasing waterbird populations at sites on the edge of their winter range: cold-weather refuge sites are more important than protected sites. J Ornithol 156:923–932.  https://doi.org/10.1007/s10336-015-1223-4 CrossRefGoogle Scholar
  22. 22.
    Musil P, Musilová Z, Fuchs R (2011) Long-term changes in numbers and distribution of wintering waterbirds in the Czech Republic, 1966–2008. Bird Stud 58:450–460.  https://doi.org/10.1080/00063657.2011.603289 CrossRefGoogle Scholar
  23. 23.
    Adam M, Musil P, Musilová Z (2016) Trends in numbers of wintering waterbird species in Czech Republic between 1966 and 2015. Aythya 6:27–39Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Nagy
    • 1
  • Ádám Dán
    • 2
  • Lenka Černíková
    • 1
  • Eliška Vitásková
    • 1
  • Vlastimil Křivda
    • 1
  • Jitka Horníčková
    • 1
  • Roman Masopust
    • 1
  • Kamil Sedlák
    • 1
  1. 1.State Veterinary Institute PraguePragueCzech Republic
  2. 2.National Food Chain Safety Office, Veterinary Diagnostic InstituteBudapestHungary

Personalised recommendations