Skip to main content
Log in

Recombinant rabies virus expressing interleukin-6 enhances the immune response in mouse brain

Archives of Virology Aims and scope Submit manuscript

Abstract

Rabies, which is caused by the rabies virus (RABV), is an ancient zoonosis that has a high mortality rate. Previous studies have indicated that recombinant RABV expressing canine interleukin-6 (rHEP-CaIL6), induced more virus-neutralizing antibodies than parental RABV in mice following intramuscular immunization. To investigate the immune response induced in the CNS by rHEP-CaIL6 after intranasal or intracranial administration in mice, the permeability of the blood-brain barrier (BBB), the infiltration of CD3 T cells, and innate immune response-related effector molecules in the CNS were examined. It was observed that infection of rHEP-CaIL6 led to enhanced BBB permeability following intranasal infection. More CD3 T cells infiltrated into the central nervous system (CNS) in mice infected with rHEP-CaIL6 than in those infected with the HEP-Flury strain. Furthermore, rHEP-CaIL6 induced an increased expression of innate immune response-related effector molecules, compared with the parental HEP-Flury strain, within the CNS. Taken together, these findings suggest that rHEP-CaIL6 induced stronger immune responses in mice brains, which is more beneficial for virus clearance. These results may also partly illustrate the role of IL6 in RABV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Huang CT, Li Z, Huang Y, Zhang G, Zhou M, Chai Q, Wu H, Fu ZF (2014) Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice. Antiviral Res 110:132–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79:12554–12565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gnanadurai CW, Zhou M, He W, Leyson CM, Huang CT, Salyards G, Harvey SB, Chen Z, He B, Yang Y, Hooper DC, Dietzchold B, Fu ZF (2013) Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with non-lethal rabies in dogs. PLoS Negl Trop Dis 7:e2375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Roy A, Hooper DC (2008) Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. J Neurovirol 14:401–411

    Article  PubMed  CAS  Google Scholar 

  5. Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176:7666–7675

    Article  PubMed  CAS  Google Scholar 

  6. Wang L, Cao Y, Tang Q, Liang G (2013) Role of the blood-brain barrier in rabies virus infection and protection. Protein Cell 4:901–903

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prehaud C, Lay S, Dietzschold B, Lafon M (2003) Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis. J Virol 77:10537–10547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yan X, Prosniak M, Curtis MT, Weiss ML, Faber M, Dietzschold B, Fu ZF (2001) Silver-haired bat rabies virus variant does not induce apoptosis in the brain of experimentally infected mice. J Neurovirol 7:518–527

    Article  PubMed  CAS  Google Scholar 

  9. Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510–518

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Luo J, Zhao J, Tian Q, Mo W, Wang Y, Chen H, Guo X (2016) A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro. Virus Gnes 52:379–387

    Article  CAS  Google Scholar 

  11. McGettigan JP, Naper K, Orenstein J, Koser M, McKenna PM, Schnell MJ (2003) Functional human immunodeficiency virus type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and env expressed from a single rhabdovirus-based vaccine vector genome. J Virol 77:10889–10899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wen Y, Wang H, Wu H, Yang F, Tripp RA, Hogan RJ, Fu ZF (2011) Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. J Virol 85:1634–1644

    Article  PubMed  CAS  Google Scholar 

  13. Luo J, Shi H, Tan Y, Niu X, Long T, Zhao J, Tian Q, Wang Y, Chen H, Guo X (2016) Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus. Vaccine 34:4392–4398

    Article  PubMed  CAS  Google Scholar 

  14. Larsen DL, Dybdahl-Sissoko N, McGregor MW, Drape R, Neumann V, Swain WF, Lunn DP, Olsen CW (1998) Coadministration of DNA encoding interleukin-6 and hemagglutinin confers protection from influenza virus challenge in mice. J Virol 72:1704–1708

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Luo J, Zhang B, Wu Y, Tian Q, Zhao J, Lyu Z, Zhang Q, Mei M, Luo Y, Guo X (2017) Expression of interleukin-6 by a recombinant rabies virus enhances its immunogenicity as a potential vaccine. Vaccine 35:938–944

    Article  PubMed  CAS  Google Scholar 

  16. Brett FM, Mizisin AP, Powell HC, Campbell IL (1995) Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol 54:766–775

    Article  PubMed  CAS  Google Scholar 

  17. de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64:37–43

    Article  PubMed  Google Scholar 

  18. Rochfort KD, Collins LE, Murphy RP, Cummins PM (2014) Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS One 9:e101815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Farkas G, Marton J, Nagy Z, Mandi Y, Takacs T, Deli MA, Abraham CS (1998) Experimental acute pancreatitis results in increased blood-brain barrier permeability in the rat: a potential role for tumor necrosis factor and interleukin 6. Neurosci Lett 242:147–150

    Article  PubMed  CAS  Google Scholar 

  20. Uchida T, Mori M, Uzawa A, Masuda H, Muto M, Ohtani R, Kuwabara S (2017) Increased cerebrospinal fluid metalloproteinase-2 and interleukin-6 are associated with albumin quotient in neuromyelitis optica: their possible role on blood-brain barrier disruption. Mult Scler 23:1072–1084

    Article  PubMed  CAS  Google Scholar 

  21. Chai Q, He WQ, Zhou M, Lu H, Fu ZF (2014) Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 88:4698–4710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC (2007) A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol 178:7334–7343

    Article  PubMed  CAS  Google Scholar 

  23. Barkhouse DA, Garcia SA, Bongiorno EK, Lebrun A, Faber M, Hooper DC (2015) Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J Virol 89:312–322

    Article  PubMed  CAS  Google Scholar 

  24. Chai Q, She R, Huang Y, Fu ZF (2015) Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. J Virol 89:870–876

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Tian Q, Xu X, Yang X, Luo J, Mo W, Peng J, Niu X, Luo Y, Guo X (2014) Recombinant rabies virus expressing IFNalpha1 enhanced immune responses resulting in its attenuation and stronger immunogenicity. Virology 468–470:621–630

    Article  PubMed  CAS  Google Scholar 

  26. Hooper DC, Kean RB, Scott GS, Spitsin SV, Mikheeva T, Morimoto K, Bette M, Rohrenbeck AM, Dietzschold B, Weihe E (2001) The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. J Immunol 167:3470–3477

    Article  PubMed  CAS  Google Scholar 

  27. Roy A, Phares TW, Koprowski H, Hooper DC (2007) Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J Virol 81:1110–1118

    Article  PubMed  CAS  Google Scholar 

  28. Hooper DC, Phares TW, Fabis MJ, Roy A (2009) The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis 3:e535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pitossi F, Blank A, Schroder A, Schwarz A, Hussi P, Schwemmle M, Pavlovic J, Staeheli P (1993) A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol 67:6726–6732

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jeon YJ, Yoo HM, Chung CH (2010) ISG15 and immune diseases. Biochim Biophys Acta 1802:485–496

    Article  PubMed  CAS  Google Scholar 

  32. Li D, Chen JL, Zhang H, Yang X, Wan XP, Cheng C, Li Y, Wang ZZ, Lv XB, Wang HN, Wang HY, Li JL, Gao R (2011) Improvement of the immunity of pig to Hog cholera vaccine by recombinant plasmid with porcine interleukin-6 gene and CpG motifs. Vaccine 29:3888–3894

    Article  PubMed  CAS  Google Scholar 

  33. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki M, Maghni K, Molet S, Shimbara A, Hamid QA, Martin JG (2002) IFN-gamma secretion by CD8T cells inhibits allergen-induced airway eosinophilia but not late airway responses. J Allergy Clin Immunol 109:803–809

    Article  PubMed  CAS  Google Scholar 

  35. Robertsen B (2006) The interferon system of teleost fish. Fish Shellfish Immunol 20:172–191

    Article  PubMed  CAS  Google Scholar 

  36. Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF (2009) The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. J Virol 83:11808–11818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang D, He F, Bi S, Guo H, Zhang B, Wu F, Liang J, Yang Y, Tian Q, Ju C, Fan H, Chen J, Guo X, Luo Y (2016) Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus. Front Microbiol 7:751

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Guangdong Haid Institute of Animal Husbandry and Veterinary Research for providing instruments for our work. This study was partially supported by the Nature Science Foundation of Guangdong (No.2015A03031103), the National Key Research and Development Program of China (No. 2016YFD0500400), the National Nature Science Foundation of China (No.31172322) and the grant from the 2017 Graduate Student Overseas Study Program of South China Agricultural University (2017LHPY028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving animals were approved by the Ethics Committee for Animal Experiments at South China Agricultural University. All animal experiments were carried out in strict accordance with international, national and institutional guidelines for the use and care of animals.

Additional information

Handling Editor: Diego G. Diel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhang, B., Wu, Y. et al. Recombinant rabies virus expressing interleukin-6 enhances the immune response in mouse brain. Arch Virol 163, 1889–1895 (2018). https://doi.org/10.1007/s00705-018-3808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3808-8

Navigation