Advertisement

Archives of Virology

, Volume 163, Issue 7, pp 1805–1821 | Cite as

MAVS induces a host cell defense to inhibit CSFV infection

  • Wang Dong
  • Huifang Lv
  • Cheng Li
  • Yaru Liu
  • Chengbao Wang
  • Jihui Lin
  • Yifan Wang
  • Gui Qian
  • Kangkang Guo
  • Yanming Zhang
Original Article

Abstract

Classical swine fever virus (CSFV) infection results in highly significant economic losses. Previous studies have suggested that CSFV can be recognized by RIG-I-like receptors (RLRs) to trigger innate defenses. However, the role of mitochondrial antiviral signaling protein (MAVS), the adaptor of RLRs, is still unknown during CSFV infection. Here, we showed that CSFV infection increased MAVS expression in porcine alveolar macrophages (PAMs). Additionally, intracellular reactive oxygen species (ROS) were involved in MAVS expression in CSFV-infected PAMs. Moreover, MAVS enhanced the induction of antiviral and pro-inflammatory cytokines and apoptosis, and inhibited CSFV replication. However, CSFV still establishes a persistent infection in the host. Thus, how CSFV antagonises MAVS-mediated host cell defense was investigated. Importantly, CSFV Npro inhibited MAVS-induced interferons and pro-inflammatory cytokines and apoptosis. Furthermore, IRF3-knockdown also suppressed MAVS-induced host cell defense. Taken together, these results demonstrate that intracellular ROS is involved in CSFV-induced MAVS expression and MAVS induces antiviral cytokines and apoptosis to inhibit CSFV replication while CSFV Npro inhibits MAVS-mediated host cell defenses possibly through degradation of IRF3. These data offer novel insights into the immunomodulatory effects of CSFV infection on the host innate response.

Notes

Funding

This study was supported by the National Natural Science Foundation of China (31472210).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Dreier S, Zimmermann B, Moennig V, Greiser-Wilke I (2007) A sequence database allowing automated genotyping of Classical swine fever virus isolates. J Virol Methods 140(1–2):95–99.  https://doi.org/10.1016/j.jviromet.2006.11.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Luo Y, Li S, Sun Y, Qiu HJ (2014) Classical swine fever in China: a minireview. Vet Microbiol 172(1–2):1–6.  https://doi.org/10.1016/j.vetmic.2014.04.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, Konig M, Schweizer M, Stalder H, Schirrmeier H, Thiel HJ (2003) Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311(1):96–104CrossRefPubMedGoogle Scholar
  4. 4.
    Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S, Becher P, Thiel HJ, Rumenapf T (2011) Biosynthesis of classical swine fever virus nonstructural proteins. J Virol 85(7):3607–3620.  https://doi.org/10.1128/JVI.02206-10 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thiel HJ, Stark R, Weiland E, Rumenapf T, Meyers G (1991) Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65(9):4705–4712PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N (2007) Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81(7):3087–3096.  https://doi.org/10.1128/JVI.02032-06 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fiebach AR, Guzylack-Piriou L, Python S, Summerfield A, Ruggli N (2011) Classical swine fever virus N(pro) limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J Virol 85(16):8002–8011.  https://doi.org/10.1128/JVI.00330-11 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johns HL, Doceul V, Everett H, Crooke H, Charleston B, Seago J (2010) The classical swine fever virus N-terminal protease N(pro) binds to cellular HAX-1. J Gen Virol 91(Pt 11):2677–2686.  https://doi.org/10.1099/vir.0.022897-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Ruggli N, Bird BH, Liu L, Bauhofer O, Tratschin JD, Hofmann MA (2005) N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Virology 340(2):265–276.  https://doi.org/10.1016/j.virol.2005.06.033 CrossRefPubMedGoogle Scholar
  10. 10.
    Koshiba T (2013) Mitochondrial-mediated antiviral immunity. Biochim Biophys Acta 1833(1):225–232.  https://doi.org/10.1016/j.bbamcr.2012.03.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118.  https://doi.org/10.1146/annurev-genet-102108-134850 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11(6):389–402.  https://doi.org/10.1038/nri2975 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang D, Fang L, Li T, Luo R, Xie L, Jiang Y, Chen H, Xiao S (2008) Molecular cloning and functional characterization of porcine IFN-beta promoter stimulator 1 (IPS-1). Vet Immunol Immunopathol 125(3–4):344–353.  https://doi.org/10.1016/j.vetimm.2008.05.018 CrossRefPubMedGoogle Scholar
  14. 14.
    Belgnaoui SM, Paz S, Hiscott J (2011) Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 23(5):564–572.  https://doi.org/10.1016/j.coi.2011.08.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT, Sun L, Chen ZJ (2013) MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2:e00785.  https://doi.org/10.7554/elife.00785 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347(6227):aaa2630.  https://doi.org/10.1126/science.aaa2630 CrossRefPubMedGoogle Scholar
  17. 17.
    Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740.  https://doi.org/10.1016/j.molcel.2005.08.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Li Y, Song W, Wu J, Zhang Q, He J, Li A, Qian J, Zhai A, Hu Y, Kao W, Wei L, Zhang F, Xu D (2013) MAVS-mediated host cell defense is inhibited by Borna disease virus. Int J Biochem Cell Biol 45(8):1546–1555.  https://doi.org/10.1016/j.biocel.2013.05.012 CrossRefPubMedGoogle Scholar
  19. 19.
    Lei Y, Moore CB, Liesman RM, O’Connor BP, Bergstralh DT, Chen ZJ, Pickles RJ, Ting JP (2009) MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One 4(5):e5466.  https://doi.org/10.1371/journal.pone.0005466 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, Nzengue Y, Lamarre D, Vande Velde C, Grandvaux N (2010) Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog 6(6):e1000930.  https://doi.org/10.1371/journal.ppat.1000930 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    He L, Zhang YM, Lin Z, Li WW, Wang J, Li HL (2012) Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells. Virus Genes 45(2):274–282.  https://doi.org/10.1007/s11262-012-0773-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Meylan E, Curan J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172CrossRefPubMedGoogle Scholar
  23. 23.
    Li XD, Sun L, Seth RB, Pineda G, Chen ZJ (2005) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci USA 102(49):17717–17722.  https://doi.org/10.1073/pnas.0508531102 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang Y, Liang Y, Qu L, Chen Z, Yi M, Li K, Lemon SM (2007) Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci USA 104(17):7253–7258.  https://doi.org/10.1073/pnas.0611506104 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dong J, Xu S, Wang J, Luo R, Wang D, Xiao S, Fang L, Chen H, Jiang Y (2015) Porcine reproductive and respiratory syndrome virus 3C protease cleaves the mitochondrial antiviral signalling complex to antagonize IFN-beta expression. J Gen Virol 96(10):3049–3058.  https://doi.org/10.1099/jgv.0.000257 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bensaude E, Turner JL, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, Wileman T, Powell PP (2004) Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 85(Pt 4):1029–1037.  https://doi.org/10.1099/vir.0.19637-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Johns HL, Bensaude E, La Rocca SA, Seago J, Charleston B, Steinbach F, Drew TW, Crooke H, Everett H (2010) Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J Gen Virol 91(Pt 4):1038–1046.  https://doi.org/10.1099/vir.0.016576-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Summerfield A, Knotig SM, McCullough KC (1998) Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol 72(3):1853–1861PubMedPubMedCentralGoogle Scholar
  29. 29.
    Dong W, Lv H, Guo K, Wang T, Ouyang Y, Jin M, Zhang Y (2018) Classical swine fever virus infection and its NS4A protein expression induce IL-8 production through MAVS signaling pathway in swine umbilical vein endothelial cells. Front Microbiol 8:2687.  https://doi.org/10.3389/fmicb.2017.02687 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou W, Xu G, Wang Y, Xu Z, Liu X, Xu X, Ren G, Tian K (2017) Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells. Cell Cycle 16(1):73–81.  https://doi.org/10.1080/15384101.2016.1252882 CrossRefPubMedGoogle Scholar
  31. 31.
    Bender S, Reuter A, Eberle F, Einhorn E, Binder M, Bartenschlager R (2015) Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus. PLoS Pathog 11(11):e1005264.  https://doi.org/10.1371/journal.ppat.1005264 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li S, Wang J, He WR, Feng S, Li Y, Wang X, Liao Y, Qin HY, Li LF, Dong H, Sun Y, Luo Y, Qiu HJ (2015) Thioredoxin 2 is a novel E2-interacting protein that inhibits the replication of classical swine fever virus. J Virol 89(16):8510–8524.  https://doi.org/10.1128/JVI.00429-15 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sanchez-Cordon PJ, Nunez A, Salguero FJ, Carrasco L, Gomez-Villamandos JC (2005) Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection. J Comp Pathol 132(4):249–260.  https://doi.org/10.1016/j.jcpa.2004.10.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Darwich L, Balasch M, Plana-Duran J, Segales J, Domingo M, Mateu E (2003) Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol 84(Pt 12):3453–3457.  https://doi.org/10.1099/vir.0.19364-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519–525.  https://doi.org/10.1016/j.coviro.2011.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Barber GN (2001) Host defense, viruses and apoptosis. Cell Death Differ 8(2):113–126.  https://doi.org/10.1038/sj.cdd.4400823 CrossRefPubMedGoogle Scholar
  37. 37.
    Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988.  https://doi.org/10.1038/ni1243 CrossRefPubMedGoogle Scholar
  38. 38.
    Dutta M, Robertson SJ, Okumura A, Scott DP, Chang J, Weiss JM, Sturdevant GL, Feldmann F, Haddock E, Chiramel AI, Ponia SS, Dougherty JD, Katze MG, Rasmussen AL, Best SM (2017) A systems approach reveals MAVS signaling in myeloid cells as critical for resistance to Ebola virus in murine models of infection. Cell Rep 18(3):816–829.  https://doi.org/10.1016/j.celrep.2016.12.069 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhao J, Vijay R, Zhao J, Gale M Jr, Diamond MS, Perlman S (2016) MAVS expressed by hematopoietic cells is critical for control of West Nile Virus infection and pathogenesis. J Virol 90(16):7098–7108.  https://doi.org/10.1128/JVI.00707-16 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Proenca-Modena JL, Sesti-Costa R, Pinto AK, Richner JM, Lazear HM, Lucas T, Hyde JL, Diamond MS (2015) Oropouche virus infection and pathogenesis are restricted by MAVS, IRF-3, IRF-7, and type I interferon signaling pathways in nonmyeloid cells. J Virol 89(9):4720–4737.  https://doi.org/10.1128/JVI.00077-15 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Anggakusuma Frentzen A, Gurlevik E, Yuan Q, Steinmann E, Ott M, Staeheli P, Schmid-Burgk J, Schmidt T, Hornung V, Kuehnel F, Pietschmann T (2015) Control of hepatitis C virus replication in mouse liver-derived cells by MAVS-dependent production of type I and type III interferons. J Virol 89(7):3833–3845.  https://doi.org/10.1128/JVI.03129-14 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gupta S, Termini JM, Issac B, Guirado E, Stone GW (2016) Constitutively active MAVS inhibits HIV-1 replication via type I interferon secretion and induction of HIV-1 restriction factors. PLoS One 11(2):e0148929.  https://doi.org/10.1371/journal.pone.0148929 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Griffin DE, Hardwick JM (1997) Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 51:565–592.  https://doi.org/10.1146/annurev.micro.51.1.565 CrossRefPubMedGoogle Scholar
  44. 44.
    Nakamura S, Sasahara J, Shimizu M, Shimizu Y (1983) Replication of hog cholera virus in porcine alveolar macrophage cultures. Natl Inst Anim Health Q 23(3):101–102Google Scholar
  45. 45.
    Lee WC, Wang CS, Chien MS (1999) Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection. Vet Microbiol 67(1):17–29CrossRefPubMedGoogle Scholar
  46. 46.
    Pabst R (1996) The respiratory immune system of pigs. Vet Immunol Immunopathol 54(1–4):191–195CrossRefPubMedGoogle Scholar
  47. 47.
    von Rosen T, Lohse L, Nielsen J, Uttenthal A (2013) Classical swine fever virus infection modulates serum levels of INF-alpha, IL-8 and TNF-alpha in 6-month-old pigs. Res Vet Sci 95(3):1262–1267.  https://doi.org/10.1016/j.rvsc.2013.09.011 CrossRefGoogle Scholar
  48. 48.
    Deng J, Chen Y, Liu G, Ren J, Go C, Ivanciuc T, Deepthi K, Casola A, Garofalo RP, Bao X (2015) Mitochondrial antiviral-signalling protein plays an essential role in host immunity against human metapneumovirus. J Gen Virol 96(8):2104–2113.  https://doi.org/10.1099/vir.0.000178 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sato M, Mikami O, Kobayashi M, Nakajima Y (2000) Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet Microbiol 75(1):1–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Wang Dong
    • 1
  • Huifang Lv
    • 1
  • Cheng Li
    • 1
  • Yaru Liu
    • 1
  • Chengbao Wang
    • 1
  • Jihui Lin
    • 1
  • Yifan Wang
    • 1
  • Gui Qian
    • 1
  • Kangkang Guo
    • 1
  • Yanming Zhang
    • 1
  1. 1.College of Veterinary MedicineNorthwest A&F UniversityYanglingChina

Personalised recommendations