Archives of Virology

, Volume 163, Issue 7, pp 1717–1726 | Cite as

Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections

  • Bouchra Kitab
  • Michinori Kohara
  • Kyoko Tsukiyama-Kohara


Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.



This work was supported by grants from the Japan Agency for Medical Research and Development and the Tokyo Metropolitan Government.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    World Health Organization (2016) Dengue and severe dengue. Accessed 11 Sept 2016
  2. 2.
    Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6:e1760PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O et al (2013) The global distribution and burden of dengue. Nature 496:504–507PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Yacoub S, Mongkolsapaya J, Screaton G (2013) The pathogenesis of dengue. Curr Opin Infect Dis 26:284–289PubMedCrossRefGoogle Scholar
  5. 5.
    Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E et al (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7–S16PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Malisheni M, Khaiboullina SF, Rizvanov AA, Takah N, Murewanhema G, Bates M (2017) Clinical efficacy, safety, and immunogenicity of a live attenuated tetravalent dengue vaccine (CYD-TDV) in children: a systematic review with meta-analysis. Front Immunol 8:863PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    World Health Organization (2017) WHO advises Dengvaxia be used only in people previously infected with dengue. Dec 13, 2017. Accessed 14 Dec 2017
  8. 8.
    Henchal EA, Putnak RJ (1990) The dengue viruses. Clin Microbiol Rev 3:376–396PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Costa VV, Fagundes CT, Souza DG, Teixeira MM (2013) Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol 182:1950–1961PubMedCrossRefGoogle Scholar
  10. 10.
    Rodriguez-Madoz JR, Bernal-Rubio D, Kaminski D, Boyd K, Fernandez-Sesma A (2010) Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol 84:4845–4850PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rothman AL (2004) Dengue: defining protective versus pathologic immunity. J Clin Investig 113:946–951PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zellweger RM, Shresta S (2014) Mouse models to study dengue virus immunology and pathogenesis. Front Immunol 5:151PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Clark KB, Onlamoon N, Hsiao HM, Perng GC, Villinger F (2013) Can non-human primates serve as models for investigating dengue disease pathogenesis? Front Microbiol 4:305PubMedPubMedCentralGoogle Scholar
  14. 14.
    World Health Organization (2009) Dengue. Guidelines for diagnosis, treatment prevention and control. Geneva, World Health Organization, WHO/HTM/NTD/DEN/2009. (
  15. 15.
    Halstead SB, Cohen SN (2015) Dengue hemorrhagic fever at 60 years: early evolution of concepts of causation and treatment. Microbiol Mol Biol Rev 79:281–291PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yacoub S, Griffiths A, Chau TT, Simmons CP, Wills B, Hien TT, Henein M, Farrar J (2012) Cardiac function in Vietnamese patients with different dengue severity grades. Crit Care Med 40:477–483PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496PubMedPubMedCentralGoogle Scholar
  18. 18.
    Halstead SB (2012) Controversies in dengue pathogenesis. Paediatr Int Child Health 32:5–9PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, Yoon IK, Gibbons RV, Burke DS, Cummings DA (2013) Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface 10:20130414PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever, dengue shock syndrome: an historical perspective and role of antibody dependent enhancement of infection. Arch Virol 158:1445–1459PubMedCrossRefGoogle Scholar
  21. 21.
    Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, Jarman RG, Yoon IK, Gibbons RV, Brion JD et al (2009) A prospective nested case-control study of dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med 6:e1000171PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Burke DS, Kliks S (2006) Antibody-dependent enhancement in dengue virus infections. J Infect Dis 193:601–603PubMedCrossRefGoogle Scholar
  23. 23.
    Sierra BDLC, García G, Pérez AB, Morier L, Alvarez M, Kourí G, Guzman MG (2006) Ethnicity and difference in dengue virus-specific memory T cell responses in Cuban individuals. Viral Immunol 19:662–668CrossRefGoogle Scholar
  24. 24.
    Guzmán MG, Kouri G, Bravo J, Valdes L, Vazquez S, Halstead SB (2002) Effect of age on outcome of secondary dengue 2 infections. Int J Infect Dis 6:118–124PubMedCrossRefGoogle Scholar
  25. 25.
    Vejbaesya S, Luangtrakool P, Luangtrakool K, Kalayanarooj S, Vaughn DW, Endy TP, Mammen MP, Green S, Libraty DH, Ennis FA et al (2009) TNF and LTA gene, allele, and extended HLA haplotype associations with severe dengue virus infection in ethnic Thais. J Infect Dis 199:1442–1448PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de Chacon Ramos C, Rico-Hesse R (1999) Dengue virus structural differences that correlate with pathogenesis. J Virol 73:4738–4747PubMedPubMedCentralGoogle Scholar
  27. 27.
    Vicente CR, Herbinger KH, Fröschl G, Malta Romano C, Cabidelle AD, Junior CC (2016) Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitória. Brazil. BMC Infect Dis 16:320PubMedCrossRefGoogle Scholar
  28. 28.
    Sánchez IJ, Ruiz BH (1996) A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 77:2541–2545PubMedCrossRefGoogle Scholar
  29. 29.
    Diamond MS, Edgil D, Roberts TG, Lu B, Harris E (2000) Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74:7814–7823PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Limon-Flores AY, Perez-Tapia M, Estrada-Garcia I, Vaughan G, Escobar-Gutierrez A, Calderon-Amador J, Herrera-Rodriguez SE, Brizuela-Garcia A, Heras-Chavarria M, Flores-Langarica A et al (2005) Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol 86:323–334PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189:1411–1418PubMedCrossRefGoogle Scholar
  32. 32.
    Duangkhae P, Erdos G, Ryman KD, Watkins SC, Falo LD Jr, Marques ETA Jr, Barratt-Boyes SM (2017) Interplay between keratinocytes and myeloid cells drives dengue virus spread in human Skin. J Invest Dermatol. PubMedCrossRefGoogle Scholar
  33. 33.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, García-Sastre A, Katze MG et al (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345PubMedCrossRefGoogle Scholar
  37. 37.
    Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11:604–615PubMedCrossRefGoogle Scholar
  38. 38.
    Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5:e926PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A (2010) Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 84:9760–9774PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Carlin AF, Plummer EM, Vizcarra EA, Sheets N, Joo Y, Tang W, Day J, Greenbaum J, Glass CK, Diamond MS et al (2017) An IRF-3-, IRF-5-, and IRF-7-independent pathway of dengue viral resistance utilizes IRF-1 to stimulate type I and II interferon responses. Cell Rep 21:1600–1612PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, Lin YL, Chang DM, Tai TY, Lai JH (2005) Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 174:8163–8172PubMedCrossRefGoogle Scholar
  42. 42.
    Fink J, Gu F, Ling L, Tolfvenstam T, Olfat F, Chin KC, Aw P, George J, Kuznetsov VA, Schreiber M et al (2007) Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1:e86PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hibberd ML, Ling L, Tolfvenstam T, Mitchell W, Wong C, Kuznetsov VA, George J, Ong SH, Ruan Y, Wei CL et al (2006) A genomics approach to understanding host response during dengue infection. Novartis Found Symp 277:206–214PubMedGoogle Scholar
  44. 44.
    Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79:8004–8013PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mazzon M, Jones M, Davidson A, Chain B, Jacobs M (2009) Dengue virus NS5 inhibits interferonalpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 200:1261–1270PubMedCrossRefGoogle Scholar
  47. 47.
    Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, Lamothe F, Fredericks AC, Tripathi S, Zhu T, Pintado-Silva J, Webb LG, Bernal-Rubio D et al (2017) Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol 2:17037PubMedCrossRefGoogle Scholar
  48. 48.
    Sun B, Sundström KB, Chew JJ, Bist P, Gan ES, Tan HC, Goh KC, Chawla T, Tang CK, Ooi EE (2017) Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep 7:3594PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67:2773–2786PubMedCrossRefGoogle Scholar
  50. 50.
    Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927PubMedCrossRefGoogle Scholar
  51. 51.
    Kliks SC, Nisalak A, Brandt WE, Wahl L, Burke DS (1989) Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg 40:444–451PubMedCrossRefGoogle Scholar
  52. 52.
    Marovich M, Grouard-Vogel G, Louder M, Eller M, Sun W, Wu SJ, Putvatana R, Murphy G, Tassaneetrithep B, Burgess T et al (2001) Human dendritic cells as targets of dengue virus infection. J Investig Dermatol Symp Proc 6:219–224PubMedCrossRefGoogle Scholar
  53. 53.
    Chareonsirisuthigul T, Kalayanarooj S, Ubol S (2007) Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 88:365–375PubMedCrossRefGoogle Scholar
  54. 54.
    Medina FA, Torres-Malavé G, Chase AJ, Santiago GA, Medina JF, Santiago LM, Muñoz-Jordán JL (2015) Differences in type I interferon signaling antagonism by dengue viruses in human and non-human primate cell lines. PLoS Negl Trop Dis 9:e0003468PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Surasombatpattana P, Hamel R, Patramool S, Luplertlop N, Thomas F, Desprès P, Briant L, Yssel H, Missé D (2011) Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infect Genet Evol 11:1664–1673PubMedCrossRefGoogle Scholar
  56. 56.
    Bustos-Arriaga J, García-Machorro J, León-Juárez M, García-Cordero J, Santos-Argumedo L, Flores-Romo L, Méndez-Cruz AR, Juárez-Delgado FJ, Cedillo-Barrón L (2011) Activation of the innate immune response against DENV in normal non-transformed human fibroblasts. PLoS Negl Trop Dis 5:e1420PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kayesh MEH, Kitab B, Sanada T, Hayasaka D, Morita K, Kohara M, Tsukiyama-Kohara K (2017) Susceptibility and initial immune response of Tupaia belangeri cells to dengue virus infection. Infect Genet Evol 51:203–210PubMedCrossRefGoogle Scholar
  58. 58.
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT et al (2013) Genome of the Chinese tree shrew. Nat Commun 4:1426PubMedCrossRefGoogle Scholar
  59. 59.
    Tsukiyama-Kohara K, Kohara M (2014) Tupaia belangeri as an experimental animal model for viral infection. Exp Anim 63:367–374PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sariol CA, Martínez MI, Rivera F, Rodríguez IV, Pantoja P, Abel K, Arana T, Giavedoni L, Hodara V, White LJ et al (2011) Decreased dengue replication and an increased anti-viral humoral response with the use of combined toll-like receptor 3 and 7/8 agonists in macaques. PLoS One 6:e19323PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Thomas SJ (2013) Dengue human infection model: re-establishing a tool for understanding dengue immunology and advancing vaccine development. Hum Vaccin Immunother 9:1587–1590PubMedCrossRefGoogle Scholar
  62. 62.
    Graham H (1902) Dengue: a study of its mode of propagation and pathology. Med RecNY 61:204–207Google Scholar
  63. 63.
    Ashburn PM, Craig CF (1907) Experimental investigations regarding the etiology of dengue fever. J Infect Dis 4:440–475CrossRefGoogle Scholar
  64. 64.
    Siler JF, Hall MW, Hitchens AP (1926) Dengue: its history, epidemilogy, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention. Philipp J Sci 29:1–304Google Scholar
  65. 65.
    Simmons J, St John J, Reynolds F (1931) Experimental studies of dengue. Philipp J Sci 44:1–247Google Scholar
  66. 66.
    Sabin AB (1952) Research on dengue during World War II. Am J Trop Hyg 1:30–50CrossRefGoogle Scholar
  67. 67.
    Gunther VJ, Putnak R, Eckels KH, Mammen MP, Scherer JM, Lyons A, Sztein MB, Sun W (2011) A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness. Vaccine 29:3895–3904PubMedCrossRefGoogle Scholar
  68. 68.
    Sun W, Eckels KH, Putnak JR, Lyons AG, Thomas SJ, Vaughn DW, Gibbons RV, Fernandez S, Gunther VJ, Mammen MP Jr et al (2013) Experimental dengue virus challenge of human subjects previously vaccinated with live attenuated tetravalent dengue vaccines. J Infect Dis 207:700–708PubMedCrossRefGoogle Scholar
  69. 69.
    Durbin AP, Kirkpatrick BD, Pierce KK, Elwood D, Larsson CJ, Lindow JC, Tibery C, Sabundayo BP, Shaffer D, Talaat KR et al (2013) A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial. J Infect Dis 207:957–965PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kirkpatrick BD, Durbin AP, Pierce KK, Carmolli MP, Tibery CM, Grier PL, Hynes N, Diehl SA, Elwood D, Jarvis AP et al (2015) Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis 212:702–710PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kirkpatrick BD, Whitehead SS, Pierce KK, Tibery CM, Grier PL, Hynes NA, Larsson CJ, Sabundayo BP, Talaat KR, Janiak A et al (2016) The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci Transl Med 8:330–336CrossRefGoogle Scholar
  72. 72.
    Grifoni A, Angelo M, Sidney J, Paul S, Peters B, de Silva AD, Phillips E, Mallal S, Diehl SA, Botten J et al (2017) Patterns of cellular immunity associated with experimental infection with rDEN2Δ30 (Tonga/74) support its suitability as a human dengue virus challenge strain. J Virol 91(8):e02133-16PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Huang KJ, Li SY, Chen SC, Liu HS, Lin YS, Yeh TM, Liu CC, Lei HY (2000) Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J GenVirol 81:2177–2182Google Scholar
  74. 74.
    Shresta S, Kyle JL, RobertBeatty P, Harris E (2004) Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology 319:262–273PubMedCrossRefGoogle Scholar
  75. 75.
    Paes MV, Pinhao AT, Barreto DF, Costa SM, Oliveira MP, Nogueira AC et al (2005) Liver injury and viremia in mice infected with dengue-2virus. Virology 338:236–246PubMedCrossRefGoogle Scholar
  76. 76.
    Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chen HC, Hofman FM, Kung JT, Lin YD, Wu-Hsieh BA (2007) Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81:5518–5526PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    McCracken MK, Christofferson RC, Chisenhall DM, Mores CN (2014) Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing. J Virol 88:1881–1889PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    An J, Kimura-Kuroda J, Hirabayashi Y, Yasui K (1999) Development of a novel mouse model for dengue virus infection. Virology 263:70–77PubMedCrossRefGoogle Scholar
  80. 80.
    Lin YL, Liao CL, Chen LK, Yeh CT, Liu CI, Ma SH, Huang YY, Huang YL, Kao CL, King CC (1998) Study of dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 72:9729–9737PubMedPubMedCentralGoogle Scholar
  81. 81.
    Leung C, Chijioke O, Gujer C, Chatterjee B, Antsiferova O, Landtwing V, McHugh D, Raykova A, Münz C (2013) Infectious diseases in humanized mice. Eur J Immunol 43:2246–2254PubMedCrossRefGoogle Scholar
  82. 82.
    Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80:10208–10217PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E (2005) Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175:3946–3954PubMedCrossRefGoogle Scholar
  84. 84.
    Perry ST, Buck MD, Lada SM, Schindler C, Shresta S (2011) STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog 7:e1001297PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, Bernal-Rubio D, Williams KL, Harris E, Fernandez-Sesma A, Schindler C et al (2010) Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8:410–421PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hanley KA, Monath TP, Weaver SC, Rossi SL, Richman RL, Vasilakis N (2013) Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect Genet Evol 19:292–311PubMedCrossRefGoogle Scholar
  87. 87.
    Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9:532–541PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Diallo M, Sall AA, Moncayo AC, Ba Y, Fernandez Z, Ortiz D, Coffey LL, Mathiot C, Tesh RB, Weaver SC (2005) Potential role of sylvatic and domestic African mosquito species in dengue emergence. Am J Trop Med Hyg 73:445–449PubMedCrossRefGoogle Scholar
  89. 89.
    Rudnick A, Lim T, Ireland J (eds) (1986) Dengue fever studies in Malaysia. Bulletin of the Institute for Medical Research, vol 23. Institute for Medical Research, Kuala Lumpur, Malaysia, pp 1–241Google Scholar
  90. 90.
    Hanley KA, Guerbois M, Kautz TF, Brown M, Whitehead SS, Weaver SC, Vasilakis N, Marx PA (2014) Infection dynamics of sylvatic dengue virus in a natural primate host, the African Green Monkey. Am J Trop Med Hyg 91:672–676PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Halstead SB (1979) In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140:527–533PubMedCrossRefGoogle Scholar
  92. 92.
    Scherer WF, Russell PK, Rosen L, Casals J, Dickerman RW (1978) Experimental infection of chimpanzees with dengue viruses. Am J Trop Med Hyg 27:590–599PubMedCrossRefGoogle Scholar
  93. 93.
    Schiavetta AM, Harre JG, Wagner E, Simmons M, Raviprakash K (2003) Variable susceptibility of the owl monkey (Aotus nancymae) to four serotypes of dengue virus. Contemp Top Lab Anim Sci 42:12–20PubMedGoogle Scholar
  94. 94.
    Koraka P, Benton S, van Amerongen G, Stittelaar KJ, Osterhaus AD (2007) Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses. Microbes Infect 9:940–946PubMedCrossRefGoogle Scholar
  95. 95.
    Onlamoon N, Noisakran S, Hsiao HM, Duncan A, Villinger F, Ansari AA, Perng GC (2010) Dengue virus-induced hemorrhage in a nonhuman primate model. Blood 115:1823–1834PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Omatsu T, Moi ML, Hirayama T, Takasaki T, Nakamura S, Tajima S, Ito M, Yoshida T, Saito A, Katakai Y et al (2011) Common marmoset (Callithrix jacchus) as a primate model of dengue virus infection: development of high levels of viraemia and demonstration of protective immunity. J Gen Virol 92:2272–2280PubMedCrossRefGoogle Scholar
  97. 97.
    Moi ML, Takasaki T, Omatsu T, Nakamura S, Katakai Y, Ami Y, Suzaki Y, Saijo M, Akari H, Kurane I (2014) Demonstration of marmosets (Callithrix jacchus) as a non-human primate model for secondary dengue virus infection: high levels of viraemia and serotype cross-reactive antibody responses consistent with secondary infection of humans. J Gen Virol 95:591–600PubMedCrossRefGoogle Scholar
  98. 98.
    Khalil MA, Sarwar S, Chaudry MA, Maqbool B, Khalil Z, Tan J, Yaqub S, Hussain SA (2012) Acute kidney injury in dengue virus infection. Clin Kid J 5:390–394CrossRefGoogle Scholar
  99. 99.
    Sariol CA, Munoz-Jordan JL, Abel K, Rosado LC, Pantoja P, Giavedoni L, Rodriguez IV, White LJ, Martínez M, Arana T et al (2007) Transcriptional activation of interferon-stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1. Clin Vaccine Immunol 14:756–766PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, Rothman AL, Ennis FA (1999) Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J Med Virol 59:329–334PubMedCrossRefGoogle Scholar
  101. 101.
    Hober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G, Imbert P, Pecarere JL, Vergez-Pascal R, Wattre P et al (1993) Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin- 1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 48:324–331PubMedCrossRefGoogle Scholar
  102. 102.
    Juffrie M, Meer GM, Hack CE, Haasnoot K, Sutaryo Veerman AJ, Thijs LG (2001) Inflammatory mediators in dengue virus infection in children: interleukin-6 and its relation to C-reactive protein and secretory phospholipase A2. Am J Trop Med Hyg 65:70–75PubMedCrossRefGoogle Scholar
  103. 103.
    Raghupathy R, Chaturvedi UC, Al-Sayer H, Elbishbishi EA, Agarwal R, Nagar R, Kapoor S, Misra A, Mathur A, Nusrat H et al (1998) Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56:280–285PubMedCrossRefGoogle Scholar
  104. 104.
    Sariol CA, Martínez MI, Rivera F, Rodríguez IV, Pantoja P, Abel K, Arana T, Giavedoni L, Hodara V, White LJ et al (2011) Decreased dengue replication and an increased anti-viral humoral response with the use of combined toll-like receptor 3 and 7/8 agonists in macaques. PLoS One 6:e19323PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dejnirattisai W, Duangchinda T, Lin CL, Vasanawathana S, Jones M, Jacobs M, Malasit P, Xu XN, Screaton G, Mongkolsapaya J (2008) A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol 181:5865–5874PubMedCrossRefGoogle Scholar
  106. 106.
    Ho LJ, Shaio MF, Chang DM, Liao CL, Lai JH (2004) Infection of human dendritic cells by dengue virus activates and primes T cells towards Th0-like phenotype producing both Th1 and Th2 cytokines. Immunol Invest 33:423–437PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Bouchra Kitab
    • 1
  • Michinori Kohara
    • 2
  • Kyoko Tsukiyama-Kohara
    • 1
  1. 1.Joint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
  2. 2.Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan

Personalised recommendations