Advertisement

Archives of Virology

, Volume 163, Issue 6, pp 1695–1699 | Cite as

Two distinct begomoviruses associated with an alphasatellite coinfecting Emilia sonchifolia in Thailand

  • Liling Zhao
  • Jing Zhong
  • Xiaoyun Zhang
  • Yueyan Yin
  • Tingting Li
  • Ming Ding
Annotated Sequence Record
  • 169 Downloads

Abstract

Emilia sonchifolia is a traditionally used medicinal plant that is widespread in tropical and subtropical regions of the world. Yellow vein symptoms were observed in E. sonchifolia plants in fields in the county of Koh Samui, Surat Thani Province, Thailand, in August 2015. Two distinct begomoviruses, designated TH4872-6 and TH4872-9, and an associated alphasatellite were obtained from an E. sonchifolia leaf sample (TH4872). Sequence analysis showed that the full-length sequence of TH4872-6 was most closely related to that of ageratum yellow vein China virus (AYVCNV), with 85.7% identity, suggesting that it is a novel begomovirus, while the TH4872-9 sequence closely resembled cotton leaf curl Multan virus (CLCuMuV) with 99.1% identity. The alphasatellite sequence showed the highest nucleotide sequence identity (92.8%) to an isolate of tobacco curly shoot alphasatellite (TbCSA) originating from China. Recombination analysis revealed that the isolate TH4872-6 is a potential recombinant begomovirus, derived from ageratum yellow vein virus (AYVV) and tobacco leaf curl Thailand virus (TbLCTHV). This study represents the first report of begomoviruses identified in E. sonchifolia in Thailand.

Notes

Funding

This work was supported by the National Natural Science Foundation of China (31560501) and Applied Basic Research Foundation of Yunnan Province (2014FD067).

Compliance with ethical standards

I have read and have abided by the statement of ethical standards for manuscripts submitted to Archives of Virology.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

705_2018_3762_MOESM1_ESM.docx (219 kb)
Supplementary material 1 (DOCX 219 kb)
705_2018_3762_MOESM2_ESM.doc (174 kb)
Supplementary material 2 (DOC 173 kb)

References

  1. 1.
    Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248CrossRefPubMedGoogle Scholar
  2. 2.
    Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832CrossRefPubMedGoogle Scholar
  3. 3.
    King AMQ, Adams MJ, Carstcns EB, Lefkowitz EJ (2012) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier/Academic Press, San Diego, pp 351–372Google Scholar
  4. 4.
    Briddon RW, Patil BL, Bagewadi B, Nawaz-ul Rehman MS, Fauquet CM (2010) Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol Biol 10:97CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zaidi SS, Shafiq M, Amin I, Scheffler BE, Scheffler JA, Briddon RW, Mansoor S (2016) Frequent occurrence of Tomato leaf curl New Delhi virus in cotton leaf curl disease affected cotton in Pakistan. PLoS One 11:e0155520CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA beta—a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20:315–318CrossRefPubMedGoogle Scholar
  7. 7.
    Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar MY, Abdel-Salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324:462–474CrossRefPubMedGoogle Scholar
  8. 8.
    Xie Y, Wu PJ, Liu P, Gong HR, Zhou XP (2010) Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virol J 7:178CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou XP (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381CrossRefPubMedGoogle Scholar
  10. 10.
    Nawaz-ul-Rehman MS, Briddon RW, Fauquet CM (2012) A melting pot of old world begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS One 7:e40050CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like a satellites in association with New World begomoviruses in natural infections. Virology 404:148–157CrossRefPubMedGoogle Scholar
  12. 12.
    Romay G, Chirinos D, Geraud-Pouey F, Desbiez C (2010) Association of an atypical alphasatellite with a bipartite New World begomovirus. Arch Virol 155:1843–1847CrossRefPubMedGoogle Scholar
  13. 13.
    Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, Navas-Castillo J (2016) Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae)—definition of a distinct class of begomovirus-associated satellites. Front Microbiol 7:162CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hassan I, Orílio AF, Fiallo-Olivé E, Briddon RW, Navas-Castillo J (2016) Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Sci Rep 6:30204CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fiallo-Olivé E, Martínez-Zubiaur Y, Moriones E, Navas-Castillo J (2012) A novel class of DNA satellites associated with New World begomoviruses. Virology 426:1–6CrossRefPubMedGoogle Scholar
  16. 16.
    Fiallo-Olivé E, Tovar R, Navas-Castillo J (2016) Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytol 212:680–692CrossRefPubMedGoogle Scholar
  17. 17.
    García-Andrés S, Tomás DM, Sánchez-Campos S, Navas-Castillo J, Moriones E (2007) Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology 365:210–219CrossRefPubMedGoogle Scholar
  18. 18.
    Mubin M, Shahid MS, Tahir MN, Briddon RW, Mansoor S (2010) Characterization of begomovirus components from a weed suggests that begomoviruses may associate with multiple distinct DNA satellites. Virus Genes 40:452–457CrossRefPubMedGoogle Scholar
  19. 19.
    Yang CX, Cui GJ, Zhang J, Weng XF, Xie LH, Wu ZJ (2008) Molecular characterization of a distinct begomovirus species isolated from Emilia sonchifolia. J Plant Pathol 90:475–478Google Scholar
  20. 20.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochem Bull 19:11–15Google Scholar
  21. 21.
    Xie Y, Zhou XP, Zhang ZK, Qi YJ (2002) Tobacco curly shoot virus isolated in Yunnan is distinct species of Begomovirus. Chin Sci Bull 47:197–200CrossRefGoogle Scholar
  22. 22.
    Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394CrossRefPubMedGoogle Scholar
  23. 23.
    Guo W, Yang XL, Xie Y, Cui XF, Zhou XP (2009) Tomato yellow leaf curl Thailand virus-[Y72] from Yunnan is a monopartite begomovirus associated with DNA β. Virus Genes 38:328–333CrossRefPubMedGoogle Scholar
  24. 24.
    Bull SE, Briddon RW, Markham PG (2003) Universal primers for the PCR-mediated amplification of DNA 1: a satellite-like molecule associated with begomovirus-DNA β complexes. Mol Biotechnol 23:83–86CrossRefPubMedGoogle Scholar
  25. 25.
    Muhire B, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heyraud F, Matzeit V, Schaefer S, Schell J, Gronenborn B (1993) The conserved nonanucleotide motif of the geminivirus stem-loop sequence promotes replicational release of virus molecules from redundant copies. Biochimie 75:605–615CrossRefPubMedGoogle Scholar
  29. 29.
    Shih SL, Tsai WS, Lee LM, Kenyon L (2013) Molecular characterization of begomoviruses infecting Sauropus androgynus in Thailand. J Phytopathol 161:78–85CrossRefGoogle Scholar
  30. 30.
    Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, RamosSobrinho R, Silva JCF, Fiallo-OlivéE Briddon RW, HernándezZepeda C, Idris A, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani A (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619CrossRefPubMedGoogle Scholar
  31. 31.
    Knierim D, Maiss E (2007) Application of Phi29 DNA polymerase in identification and full-length clone inoculation of tomato yellow leaf curl Thailand virus and tobacco leaf curl Thailand virus. Arch Virol 152:941–954CrossRefPubMedGoogle Scholar
  32. 32.
    Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A (2011) Recombination in eukaryotic single stranded DNA viruses. Viruses 3:1699–1738CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Xie Y, Zhao LL, Jiao XY, Jiang T, Gong HR, Wang B, Briddon W, Zhou XP (2013) A recombinant begomovirus resulting from exchange of the C4 gene. J Gen Virol 94:1896–1907CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingPeople’s Republic of China

Personalised recommendations