Advertisement

Archives of Virology

, Volume 163, Issue 5, pp 1331–1335 | Cite as

Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions

  • Paula M. Villegas
  • Elizabeth Ortega
  • Lourdes Villa-Tanaca
  • Blanca L. Barrón
  • Jesus Torres-Flores
Brief Report

Abstract

Dengue fever is one of the most common viral infections in the world. Although a vaccine against dengue virus (DENV) has been approved in several countries, this disease is still considered a public health priority worldwide. The ability of three small interfering RNAs (FG-siRNAs) targeting conserved sequences in the NS4B and NS5 regions of the DENV genome to inhibit DENV replication was tested in vitro in both Vero and C6/36 cells. The FG-siRNAs were effective against DENV-1, -3, and -4, but not DENV-2. A fourth siRNA specifically targeting the NS5 region of the DENV-2 genome (SG-siRNA) was designed and tested against two different DENV-2 strains, showing high levels of inhibition in both mammalian and insect cells.

Keywords

siRNA Dengue virus RNA interference Arbovirus Antiviral 

Notes

Acknowledgements

We thank Dr. Juan Salas (ENMH-IPN) for kindly donating DENV-1, 2, 3 and 4 reference strains, Dr. Maria Isabel Salazar (ENCB-IPN) for providing the DENV-2 Yucatan 17438 strain, and Dr. Alfonso Méndez Tenorio (ENCB-IPN) for his support in the thermodynamic analyses.

Funding

This project was supported by Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (20160619). VPM has a fellowship from CONACyT, Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

705_2018_3757_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 41 kb)

References

  1. 1.
    Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 16:2773–2786CrossRefGoogle Scholar
  2. 2.
    Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, Ictv Report Consortium (2017) ICTV virus taxonomy profile: flaviviridae. J Gen Virol 1:2–3Google Scholar
  3. 3.
    Henchal EA, Putnak JR (1990) The dengue viruses. Clin Microbiol Rev 4:376–396CrossRefGoogle Scholar
  4. 4.
    Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 8:e1760CrossRefGoogle Scholar
  5. 5.
    Screaton G, Mongkolsapaya J (2017) Which dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination? The challenges of a dengue vaccine. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a029520 PubMedGoogle Scholar
  6. 6.
    Weaver SC, Charlier C, Vasilakis N, Lecuit M (2017) Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med.  https://doi.org/10.1146/annurev-med-050715-105122 PubMedGoogle Scholar
  7. 7.
    Maciel-de-Freitas R, Avendanho FC, Santos R, Sylvestre G, Araújo SC, Lima JB, Martins AJ, Coelho GE, Valle D (2014) Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS One 3:e92424CrossRefGoogle Scholar
  8. 8.
    Corbel V, Fonseca DM, Weetman D, Pinto J, Achee NL, Chandre F, Coulibaly MB, Dusfour I, Grieco J, Juntarajumnong W, Lenhart A, Martins AJ, Moyes C, Ng LC, Raghavendra K, Vatandoost H, Vontas J, Muller P, Kasai S, Fouque F, Velayudhan R, Durot C, David JP (2016) International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasit Vectors 1:278Google Scholar
  9. 9.
    Massonnet-Bruneel B, Corre-Catelin N, Lacroix R, Lees RS, Hoang KP, Nimmo D, Alphey L, Reiter P (2013) Fitness of transgenic mosquito Aedes aegypti males carrying a dominant lethal genetic system. PLoS One 5:e62711CrossRefGoogle Scholar
  10. 10.
    Airs PM, Bartholomay LC (2017) RNA interference for mosquito and mosquito-borne disease control. Insects 8(1):4CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Blair CD, Olson KE (2015) The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2:820–843CrossRefGoogle Scholar
  12. 12.
    Franz AW, Sanchez-Vargas I, Raban RR, Black WC 4th, James AA, Olson KE (2014) Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl Trop Dis 5:e2833CrossRefGoogle Scholar
  13. 13.
    Villegas-Rosales PM, Méndez-Tenorio A, Ortega-Soto E, Barrón BL (2012) Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses. Bioinformation 11:519–522CrossRefGoogle Scholar
  14. 14.
    Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, Chua KB (2007) Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. J Virol Methods 1–2:75–79CrossRefGoogle Scholar
  15. 15.
    Bessoff K, Phoutrides E, Delorey M, Acosta LN, Hunsperger E (2010) Utility of a commercial nonstructural protein 1 antigen capture kit as a dengue virus diagnostic tool. Clin Vaccine Immunol 6:949–953CrossRefGoogle Scholar
  16. 16.
    Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M, Kumar S, Zaremba S, Gu Z, Zhou L, Larson CN, Dietrich J, Klem EB, Scheuermann RH (2011) ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40(D1):D593–D598CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qureshi A, Thakur N, Kumar M (2013) VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses. J Transl Med 11:305CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 3:326–330CrossRefGoogle Scholar
  19. 19.
    Garmann RF, Gopal A, Athavale SS, Knobler CM, Gelbart WM, Harvey SC (2015) Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. RNA 21(5):877–886CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sükösd Z, Andersen ES, Seemann SE, Jensen MK, Hansen M, Gorodkin J, Kjems J (2015) Full-length RNA structure prediction of the HIV-1 genome reveals a core domain. Nucleic Acids Res 43(21):10168–10179PubMedPubMedCentralGoogle Scholar
  21. 21.
    Davis M, Sagan SM, Pezacki JP, Evans DJ, Simmonds P (2008) Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol 23:11824–11836CrossRefGoogle Scholar
  22. 22.
    Thurner C, Witwer C, Hofacker IL, Stadler PF (2004) Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85(5):1113–1124CrossRefPubMedGoogle Scholar
  23. 23.
    Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(suppl_2):W70–W74CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33(suppl_2):W577–W581CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    El Sahili A, Lescar J (2017) Dengue virus non-structural protein 5. Viruses 9(4):91.  https://doi.org/10.3390/v9040091 CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE (2017) The 5′ and 3′ untranslated regions of the flaviviral genome. Viruses 9(6):137.  https://doi.org/10.3390/v9060137 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Paula M. Villegas
    • 1
  • Elizabeth Ortega
    • 1
  • Lourdes Villa-Tanaca
    • 2
  • Blanca L. Barrón
    • 1
  • Jesus Torres-Flores
    • 1
  1. 1.Laboratorio de Virología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
  2. 2.Laboratorio de Genética Microbiana, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations