Skip to main content

Diversity of partial RNA-dependent RNA polymerase gene sequences of soybean blotchy mosaic virus isolates from different host-, geographical- and temporal origins

Abstract

Infection of soybean by the plant cytorhabdovirus soybean blotchy mosaic virus (SbBMV) results in significant yield losses in the temperate, lower-lying soybean production regions of South Africa. A 277 bp portion of the RNA-dependent RNA polymerase gene of 66 SbBMV isolates from different: hosts, geographical locations in South Africa, and times of collection (spanning 16 years) were amplified by RT-PCR and sequenced to investigate the genetic diversity of isolates. Phylogenetic reconstruction revealed three main lineages, designated Groups A, B and C, with isolates grouping primarily according to geographic origin. Pairwise nucleotide identities ranged between 85.7% and 100% among all isolates, with isolates in Group A exhibiting the highest degree of sequence identity, and isolates of Groups A and B being more closely related to each other than to those in Group C. This is the first study investigating the genetic diversity of SbBMV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Lamprecht RL et al (2010) Soybean blotchy mosaic virus, a new cytorhabdovirus found in South Africa. Plant Dis 94(11):1348–1354

    CAS  Article  Google Scholar 

  2. Jackson AO et al (2005) Biology of plant rhabdoviruses. Annu Rev Phytopathol 43:623–660

    CAS  Article  PubMed  Google Scholar 

  3. Dietzgen RG et al (2017) The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170

    CAS  Article  PubMed  Google Scholar 

  4. Amarasinghe GK et al (2017) Taxonomy of the order Mononegavirales: update 2017. Arch Virol 162(8):2493–2504

    CAS  Article  PubMed  Google Scholar 

  5. Pietersen G, Garnett HM (1990) A survey for the viruses of soybeans (Glycine max) in the Transvaal, South Africa. Phytophylactica 22(1):35–40

    Google Scholar 

  6. Pietersen G et al (1998) Relative abundance of soybean viruses in South Africa. Afr Plant Prot 4(2):65–70

    Google Scholar 

  7. Klerks MMJ et al (2004) Detection and tentative grouping of Strawberry crinkle virus isolates. Eur J Plant Pathol 110:45–52

    CAS  Article  Google Scholar 

  8. Revill P et al (2005) Taro vein chlorosis virus: characterization and variability of a new nucleorhabdovirus. J Gen Virol 86(2):491–499

    CAS  Article  PubMed  Google Scholar 

  9. Talbi C et al (2011) Genetic diversity of perch rhabdovirus isolates based on the nucleoprotein and glycoprotein genes. Arch Virol 156:2133–2144

    CAS  Article  PubMed  Google Scholar 

  10. Callaghan B, Dietzgen RG (2005) Nucleocapsid gene variability reveals two subgroups of Lettuce necrotic yellows virus. Arch Virol 150:1661–1667

    CAS  Article  PubMed  Google Scholar 

  11. Bourhy H et al (2005) Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. J Gen Virol 86(10):2849–2858

    CAS  Article  PubMed  Google Scholar 

  12. Parrella G, Greco B (2016) Sequence variation of block III segment identifies three distinct lineages within Eggplant mottled dwarf virus isolates from Italy, Spain and Greece. Acta Virol 60:100–105

    CAS  Article  PubMed  Google Scholar 

  13. Petrzik K (2012) Bioinformatic analysis of the L polymerase gene leads to discrimination of new rhabdoviruses. J Phytopathol 160(7–8):377–381

    CAS  Article  Google Scholar 

  14. Pappi PG et al (2016) Genetic variation of Eggplant mottled dwarf virus from annual and perennial plant hosts. Arch Virol 161(3):631–639

    CAS  Article  PubMed  Google Scholar 

  15. White EJ et al (2008) Modified cetyltrimethylammonium bromide method improves robustness and versatility: The benchmark for plant RNA extraction. Biotechnol J 3:1424–1428

    CAS  Article  PubMed  Google Scholar 

  16. Mallory A et al (2001) HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13(3):571–583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Strydom E, Pietersen G (2017) Alternative hosts and seed transmissibility of Soybean blotchy mosaic virus. Eur J Plant Pathol. https://doi.org/10.1007/s10658-017-1361-z

    Google Scholar 

  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  19. Katoh K et al (2002) A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30(14):3059–3066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Tamura K et al (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2371–2739

    Article  Google Scholar 

  21. Muhire B et al (2013) A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol 158(6):1411–1424

    CAS  Article  PubMed  Google Scholar 

  22. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    CAS  PubMed  Google Scholar 

  23. Higgins CM et al (2016) Diversity and evolutionary history of Lettuce necrotic yellows virus in Australia and New Zealand. Arch Virol 161(2):269–277

    CAS  Article  PubMed  Google Scholar 

  24. Ali A et al (2006) Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J Virol 80(17):8345–8350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Canto T, Aranda MA, Fereres A (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Glob Change Biol 15(8):1884–1894

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Association of African Universities (AAU), the Genomics Research Institute (GRI) at the University of Pretoria, South Africa and through the National Research Foundation Incentive Grant for Rated Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Pietersen.

Additional information

Handling Editor: Ralf Georg Dietzgen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strydom, E., Pietersen, G. Diversity of partial RNA-dependent RNA polymerase gene sequences of soybean blotchy mosaic virus isolates from different host-, geographical- and temporal origins. Arch Virol 163, 1299–1305 (2018). https://doi.org/10.1007/s00705-018-3722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3722-0

Keywords

  • Soybean blotchy mosaic virus
  • RNA-dependent RNA polymerase gene, maximum-likelihood analysis
  • Pairwise nucleotide similarity