Skip to main content

Advertisement

Log in

Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Jarrett WF, Crawford EM, Martin WB, Davie F (1964) A virus-like particle associated with Leukemia (Lymphosarcoma). Nature 202:567–569

    Article  CAS  Google Scholar 

  2. HardyJr WD (1993) Feline oncoretroviruses. In: Levy JA (ed) The retroviridae. Springer Science, New York, pp 109–180

    Chapter  Google Scholar 

  3. Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K (2013) Phylogenetic and structural diversity in the Feline leukemia virus env gene. PLoS One 8:e61009. https://doi.org/10.1371/journal.pone.0061009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hisasue M, Nagashima N, Nishigaki K, Fukuzawa I, Ura S, Katae H, Tsuchiya R, Yamada T, Hasegawa A, Tsujimoto H (2009) Myelodysplastic syndromes and acute myeloid leukemia in cats infected with Feline leukemia virus clone33 containing a unique long terminal repeat. Int J Cancer 124:1133–1141. https://doi.org/10.1002/ijc.24050

    Article  CAS  PubMed  Google Scholar 

  5. Hartmann K (2012) Clinical aspects of feline retroviruses: a review. Viruses 4:2684–2710. https://doi.org/10.3390/v4112684

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anai Y, Ochi H, Watanabe S, Nakagawa S, Kawamura M, Gojobori T, Nishigaki K (2012) Infectious endogenous retroviruses in cats and emergence of recombinant viruses. J Virol 86:8634–8644. https://doi.org/10.1128/JVI.00280-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheets RL, Pandey R, Jen WC, Roy-Burman P (1993) Recombinant feline leukemia virus genes detected in naturally occurring feline lymphosarcomas. J Virol 67:3118–3125

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsatsanis C, Fulton R, Nishigaki K, Tsujimoto H, Levy L, Terry A, Spandidos D, Onions D, Neil JC (1994) Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement. J Virol 68:8296–8303

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishigaki K, Okuda M, Endo Y, Watari T, Tsujimoto H, Hasegawa A (1997) Structure and function of the long terminal repeats of feline leukemia viruses derived from naturally occurring acute myeloid leukemias in cats. J Virol 71:9823–9827

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chandhasin C, Coan PN, Levy LS (2005) Subtle mutational changes in the SU protein of a natural feline leukemia virus subgroup A isolate alter disease spectrum. J Virol 79:1351–1360

    Article  CAS  Google Scholar 

  11. Miyake A, Watanabe S, Hiratsuka T, Ito J, Ngo MH, Makundi I, Kawasaki J, Endo Y, Tsujimoto H, Nishigaki K (2016) Novel feline leukemia virus interference group based on env gene. J Virol 90:4832–4837. https://doi.org/10.1128/JVI.03229-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsumoto Y, Momoi Y, Watari T, Goitsuka R, Tsujimoto H, Hasegawa A (1992) Detection of enhancer repeats in the long terminal repeats of Feline leukemia viruses from cats with spontaneous neoplastic and nonneoplastic diseases. Virology 189:745–749

    Article  CAS  Google Scholar 

  13. Fulton R, Plumb M, Shield L, Neil JC (1990) Structural diversity and nuclear protein binding sites in the long terminal repeats of Feline leukemia virus. J Virol 64:1675–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Neil JC, Hughes D, McFarlane R, Wilkie NM, Onions DE, Lees G, Jarrett O (1984) Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias. Nature 308:814–820

    Article  CAS  Google Scholar 

  15. Levy LS, Gardner MB, Casey JW (1984) Isolation of a feline leukaemia provirus containing the oncogene myc from a feline lymphosarcoma. Nature 308:853–856

    Article  CAS  Google Scholar 

  16. Mullins JI, Brody DS, Binari RC Jr, Cotter SM (1984) Viral transduction of c-myc gene in naturally occurring feline leukaemias. Nature 308:856–858

    Article  CAS  Google Scholar 

  17. Fulton R, Forrest D, McFarlane R, Onions D, Neil JC (1987) Retroviral transduction of T-cell antigen receptor beta-chain and myc genes. Nature 326:190–194

    Article  CAS  Google Scholar 

  18. Rohn JL, Lauring AS, Linenberger ML, Overbaugh J (1996) Transduction of Notch2 in Feline leukemia virus-induced thymic lymphoma. J Virol 70:8071–8080

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Watanabe S, Ito J, Baba T, Hiratsuka T, Kuse K, Ochi H, Anai Y, Hisasue M, Tsujimoto H, Nishigaki K (2014) Notch2 transduction by Feline leukemia virus in a naturally infected cat. J Vet Med Sci 76:553–557

    Article  CAS  Google Scholar 

  20. Kawamura M, Umehara D, Odahara Y, Miyake A, Ngo MH, Ohsato Y, Hisasue M, Nakaya MA, Watanabe S, Nishigaki K (2017) AKT capture by feline leukemia virus. Arch Virol 162:1031–1036. https://doi.org/10.1007/s00705-016-3192-1

    Article  CAS  PubMed  Google Scholar 

  21. Stewart MA, Warnock M, Wheeler A, Wilkie N, Mullins JI, Onions DE, Neil JC (1986) Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol 58:825–834

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Overbaugh J, Riedel N, Hoover EA, Mullins JI (1988) Transduction of endogenous envelope genes by feline leukaemia virus in vitro. Nature 332:731–734

    Article  CAS  Google Scholar 

  23. Sheets RL, Pandey R, Jen WC, Roy-Burman P (1993) Recombinant feline leukemia virus genes detected in naturally occurring feline lymphosarcomas. J Virol 67:3118–3125

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawamura M, Watanabe S, Odahara Y, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K (2015) Genetic diversity in the Feline leukemia virus gag gene. Virus Res 204:74–81. https://doi.org/10.1016/j.virusres.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  25. Kawasaki J, Kawamura M, Ohsato Y, Ito J, Nishigaki K (2017) Presence of a shared 5’-leader sequence in ancestral human and mammalian retroviruses and its transduction into feline leukemia virus. J Virol 91:e00829-17. https://doi.org/10.1128/JVI.00829-17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Forrest D, Onions D, Lees G, Neil JC (1987) Altered structure and expression of c-myc in feline T-cell tumors. Virology 158:194–205

    Article  CAS  Google Scholar 

  27. Fujino Y, Ohno K, Tsujimoto H (2008) Molecular pathogenesis of feline leukemia virus-induced malignancies: insertional mutagenesis. Vet Immunol Immunopathol 123:138–143. https://doi.org/10.1016/j.vetimm.2008.01.019

    Article  CAS  PubMed  Google Scholar 

  28. Onions D, Lees G, Forrest D, Neil J (1987) Recombinant feline viruses containing the myc gene rapidly produce clonal tumours expressing T-cell antigen receptor gene transcripts. Int J Cancer 40:40–45

    Article  CAS  Google Scholar 

  29. Levy LS, Fish RE, Baskin GB (1988) Tumorigenic potential of a myc-containing strain of feline leukemia virus in vivo in domestic cats. J Virol. 62:4770–4773

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gil da Costa RM (2015) C-kit as a prognostic and therapeutic marker in canine cutaneous mast cell tumours: From laboratory to clinic. Vet J 205(1):5–10. https://doi.org/10.1016/j.tvjl.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  31. Braun MJ, Deininger PL, Casey JW (1985) Nucleotide sequence of a transduced myc gene from a defective feline leukemia provirus. J Virol. 55:177–183

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stewart MA, Forrest D, McFarlane R, Onions D, Wilkie N, Neil JC (1986) Conservation of the c-myc coding sequence in transduced feline v-myc genes. Virology 154:121–134

    Article  CAS  Google Scholar 

  33. Doggett DL, Drake AL, Hirsch V, Rowe ME, Stallard V, Mullins JI (1989) Structure, origin, and transforming activity of feline leukemia virus-myc recombinant provirus FTT. J Virol 63:2108–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu FY, Iijima K, Tsujimoto H, Tamura Y, Higurashi M (1995) Chromosomal translocations in two feline T-cell lymphomas. Leuk Res 19:857–860

    Article  CAS  Google Scholar 

  35. Werner JA, Woo JC, Vernau W, Graham PS, Grahn RA, Lyons LA, Moore PF (2005) Characterization of feline immunoglobulin heavy chain variable region genes for the molecular diagnosis of B-cell neoplasia. Vet Pathol 42:596–607

    Article  CAS  Google Scholar 

  36. Moore PF, Woo JC, Vernau W, Kosten Graham PS (2005) Characterization of feline T cell receptor gamma (TCRG) variable region genes for the molecular diagnosis of feline intestinal T cell lymphoma. Vet Immunol Immunopathol 106:167–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Hajime Tsujimoto (The University of Tokyo) for providing feline samples and FT-G cell line. We thank Katie Oakley, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This study was supported by the Japanese Society for the Promotion of Science, KAKENHI.

Funding

This study was funded by Japan Society for the Promotion of Science KAKENHI (Grant Number 15H04602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Nishigaki.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Animal studies were conducted following the guidelines for the Care and Use of Laboratory Animals of the Ministry of Education, Culture, Sports, Science and Technology, Japan. All experiments were approved by the Genetic Modification Safety Committee of Yamaguchi University.

Human and animal right statement

No studies with human participants were performed.

Additional information

Handling Editor: Roman Pogranichniy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumi, R., Miyake, A., Endo, T. et al. Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats. Arch Virol 163, 1073–1077 (2018). https://doi.org/10.1007/s00705-018-3721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3721-1

Navigation