Archives of Virology

, Volume 163, Issue 7, pp 1969–1971 | Cite as

Genomic characterization of the novel Ralstonia phage RPSC1

  • Min LiaoEmail author
Annotated Sequence Record


In this paper, I describe the genomic characteristics of a Ralstonia phage infecting Ralstonia solanacearum. The Ralstonia phage RPSC1 was isolated from a soil sample collected in Sichuan Province, in southwestern China. The complete genome of RPSC1 is composed of a linear double-stranded DNA 39,628 bp in length, with G+C content of 61.55%, and 43 putative protein-coding genes. All the putative protein-coding genes were on the same strand. No tRNA-encoding genes were identified. Phylogenetic and comparative genomics analyses indicate that Ralstonia phage RPSC1 should be considered a new member of the family Podoviridae. The wide host range contributes to the potential of Ralstonia phage RPSC1 as a biocontrol agent.



This research was funded by the Doctoral Research Project of Mianyang Normal University (QD2017A004).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

705_2018_3713_MOESM1_ESM.docx (179 kb)
Supplementary material 1 (DOCX 179 kb)
705_2018_3713_MOESM2_ESM.xlsx (14 kb)
Supplementary material 2 (XLSX 13 kb)


  1. 1.
    Baldeweg F, Kage H, Schieferdecker S, Allen C, Hoffmeister D et al (2017) Structure of Ralsolamycin, the Interkingdom Morphogen from the Crop Plant Pathogen Ralstonia solanacearum. Org Lett 19:4868–4871CrossRefPubMedGoogle Scholar
  2. 2.
    Blomme G, Dita M, Jacobsen KS, Perez Vicente L, Molina A et al (2017) Bacterial diseases of bananas and enset: current state of knowledge and integrated approaches toward sustainable management. Front Plant Sci 8:1290CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alvarez B, Biosca EG (2017) Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Front Plant Sci 8:1218CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M et al (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Van Truong Thi B, Pham Khanh NH, Namikawa R, Miki K, Kondo A et al (2016) Genomic characterization of Ralstonia solanacearum phage varphiRS138 of the family Siphoviridae. Arch Virol 161:483–486CrossRefGoogle Scholar
  6. 6.
    Van TT, Yoshida S, Miki K, Kondo A, Kamei K (2014) Genomic characterization of varphiRS603, a filamentous bacteriophage that is infectious to the phytopathogen Ralstonia solanacearum. Microbiol Immunol 58:697–700CrossRefPubMedGoogle Scholar
  7. 7.
    Fan X, Yan J, Xie L, Zeng L, Young RF et al (2015) Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil. Gene 561:45–53CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bae JY, Wu J, Lee HJ, Jo EJ, Murugaiyan S et al (2012) Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J Microbiol Biotechnol 22:1613–1620CrossRefPubMedGoogle Scholar
  9. 9.
    Kawasaki T, Narulita E, Matsunami M, Ishikawa H, Shimizu M et al (2016) Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum. Virology 492:73–81CrossRefPubMedGoogle Scholar
  10. 10.
    Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE et al (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–454CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–689CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Darling AE, Tritt A, Eisen JA, Facciotti MT (2011) Mauve assembly metrics. Bioinformatics 27:2756–2757CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bhunchoth A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kotera S et al (2015) Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J Appl Microbiol 118:1023–1033CrossRefPubMedGoogle Scholar
  16. 16.
    Kawasaki T, Shimizu M, Satsuma H, Fujiwara A, Fujie M et al (2009) Genomic characterization of Ralstonia solanacearum phage phiRSB1, a T7-like wide-host-range phage. J Bacteriol 191:422–427CrossRefPubMedGoogle Scholar
  17. 17.
    Park TH (2018) Complete genome sequence of DU_RP_II, a novel Ralstonia solanacearum phage of the family Podoviridae. Arch Virol 163:269–271CrossRefPubMedGoogle Scholar
  18. 18.
    Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP et al (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life Science & BiotechnologyMianyang Teachers’ CollegeMianyangChina

Personalised recommendations