Skip to main content

Advertisement

Log in

Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Deep sequencing of small RNAs has proved effective in the diagnosis of mycovirus infections. In this study, the presence of mycoviruses in ten isolates of the phytopathogenic fungus Fusarium circinatum was investigated by high-throughput sequencing (HTS) of small RNAs. The contigs resulting from de novo assembly of the reads were aligned to viral genome sequences. The presence of each mycovirus detected in the isolates was confirmed by RT-PCR analysis with four previously described primer pairs and seven new pairs designed on the basis of sequencing data. The findings demonstrate the potential use of HTS for reconstructing previously identified mitoviruses infecting F. circinatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wingfield MJ, Hammerbacher A, Ganley RJ et al (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37:319–334. https://doi.org/10.1071/AP08036

    Article  Google Scholar 

  2. Brockerhoff EG, Dick M, Ganley R et al (2016) Role of insect vectors in epidemiology and invasion risk of Fusarium circinatum, and risk assessment of biological control of invasive Pinus contorta. Biol Invasions 18:1177–1190. https://doi.org/10.1007/s10530-016-1059-8

    Article  Google Scholar 

  3. Bezos D, Lomba JM, Martinez-Álvarez P et al (2012) Effects of pruning in monterrey pine plantations affected by Fusarium circinatum. For Syst 21:481–488

    Google Scholar 

  4. Bezos D, Martínez-Álvarez P, Fernández M, Diez JJ (2017) Epidemiology and management of Pine Pitch Canker Disease in Europe—a review. Balt For 23:279–293

    Google Scholar 

  5. Pearson MN, Beever RE, Boine B, Arthur K (2009) Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol 10:115–128. https://doi.org/10.1111/j.1364-3703.2008.00503.x

    Article  CAS  PubMed  Google Scholar 

  6. Xie J, Jiang D (2014) New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68. https://doi.org/10.1146/annurev-phyto-102313-050222

    Article  CAS  PubMed  Google Scholar 

  7. Zamora P, Martín AB, San Martín R et al (2014) Control of chestnut blight by the use of hypovirulent strains of the fungus Cryphonectria parasitica in northwestern Spain. Biol Control 79:58–66. https://doi.org/10.1016/j.biocontrol.2014.08.005

    Article  Google Scholar 

  8. Rigling D, Heiniger U, Hohl HR (1989) Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia) parasitica. Phytopathology 79:219–223. https://doi.org/10.1094/Phyto-79-219

    Article  CAS  Google Scholar 

  9. Peever TL, Liu YC, Cortesi P, Milgroom MG (2000) Variation in tolerance and virulence in the chestnut blight fungus–hypovirus interaction. Appl Environ Microbiol 66:4863–4869. https://doi.org/10.1128/AEM.66.11.4863-4869.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martínez-Álvarez P, Vainio EJ, Botella L et al (2014) Three mitovirus strains infecting a single isolate of Fusarium circinatum are the first putative members of the family Narnaviridae detected in a fungus of the genus Fusarium. Arch Virol 159:2153–2155. https://doi.org/10.1007/s00705-014-2012-8

    Article  CAS  PubMed  Google Scholar 

  11. Vainio EJ, Martínez-Álvarez P, Bezos D et al (2015) Fusarium circinatum isolates from northern Spain are commonly infected by three distinct mitoviruses. Arch Virol 160:2093–2098. https://doi.org/10.1007/s00705-015-2462-7

    Article  CAS  PubMed  Google Scholar 

  12. Muñoz-Adalia EJ, Flores-Pacheco JA, Martínez-Álvarez P et al (2016) Effect of mycoviruses on the virulence of Fusarium circinatum and laccase activity. Physiol Mol Plant Pathol. https://doi.org/10.1016/j.pmpp.2016.03.002

    Article  Google Scholar 

  13. Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J (2010) A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol 114:955–965. https://doi.org/10.1016/j.funbio.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  14. Botella L, Dvořák M, Capretti P, Luchi N (2017) Effect of temperature on GaRV6 accumulation and its fungal host, the conifer pathogen Gremmeniella abietina. For Pathol 47:1–12. https://doi.org/10.1111/efp.12291

    Article  Google Scholar 

  15. Marzano SYL, Domier LL (2016) Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res 213:332–342. https://doi.org/10.1016/j.virusres.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  16. Osaki H, Sasaki A, Nomiyama K, Tomioka K (2016) Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52:835–847. https://doi.org/10.1007/s11262-016-1379-x

    Article  CAS  PubMed  Google Scholar 

  17. Nerva L, Ciuffo M, Vallino M et al (2016) Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Res 219:22–38. https://doi.org/10.1016/j.virusres.2015.10.028

    Article  CAS  PubMed  Google Scholar 

  18. Vainio EJ, Jurvansuu J, Streng J et al (2015) Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J Gen Virol 96:714–725. https://doi.org/10.1099/jgv.0.000003

    Article  CAS  PubMed  Google Scholar 

  19. Donaire L, Ayllón MA (2016) Deep sequencing of mycovirus-derived small RNAs from Botrytis species. Mol Plant Pathol. https://doi.org/10.1111/mpp.12466

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schumann U, Ayliffe M, Kazan K, Wang M-B (2010) RNA silencing in fungi. Front Biol 5:478–494. https://doi.org/10.1007/s11515-010-0550-3

    Article  CAS  Google Scholar 

  21. Tinoco MLP, Dias BBA, Dall’Astta RC et al (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27. https://doi.org/10.1186/1741-7007-8-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tauati SJ, Pearson MN, Choquer M et al (2014) Investigating the role of dicer 2 (dcr2) in gene silencing and the regulation of mycoviruses in Botrytis cinerea. Microbiology 83:140–148. https://doi.org/10.1134/S0026261714020180

    Article  CAS  Google Scholar 

  23. Hammond TM, Andrewski MD, Roossinck MJ, Keller NP (2008) Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell 7:350–357. https://doi.org/10.1128/EC.00356-07

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Gao Q, Huang M et al (2015) Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Sci Rep 5:12500. https://doi.org/10.1038/srep12500

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang DX, Spiering MJ, Nuss DL (2014) Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation. PLoS One. https://doi.org/10.1371/journal.pone.0108653

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  28. Seguin J, Otten P, Baerlocher L et al (2014) MISIS: a bioinformatics tool to view and analyze maps of small RNAs derived from viruses and genomic loci generating multiple small RNAs. J Virol Methods 195:120–122. https://doi.org/10.1016/j.jviromet.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  29. Weber CM, Ramachandran S, Henikoff S (2014) Nucleosomes are context-specific, H2A.Z-Modulated barriers to RNA polymerase. Mol Cell 53:819–830. https://doi.org/10.1016/j.molcel.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  30. R Development Core Team (2015) R: a language and environment for statistical computing. 55:275–286. https://www.r-project.org/

  31. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vainio EJ, Keriö S, Hantula J (2011) Description of a new putative virus infecting the conifer pathogenic fungus Heterobasidion parviporum with resemblance to Heterobasidion annosum P-type partitivirus. Arch Virol 156:79–86. https://doi.org/10.1007/s00705-010-0823-9

    Article  CAS  PubMed  Google Scholar 

  34. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:1–12. https://doi.org/10.1093/nar/gks596

    Article  CAS  Google Scholar 

  35. Deakin G, Dobbs E, Bennett JM et al (2017) Multiple viral infections in Agaricus bisporus—characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing. Sci Rep. https://doi.org/10.1038/s41598-017-01592-9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen S, Huang Q, Wu L, Qian Y (2015) Identification and characterization of a maize-associated mastrevirus in China by deep sequencing small RNA populations. Virol J 12:156. https://doi.org/10.1186/s12985-015-0384-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:551–560. https://doi.org/10.1016/j.cub.2006.06.054

    Article  CAS  Google Scholar 

  38. Moore CB, Ting JPY (2008) Regulation of mitochondrial antiviral signaling pathways. Immunity 28:735–739. https://doi.org/10.1016/j.immuni.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  39. Nibert ML (2017) Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. Virology 507:96–100. https://doi.org/10.1016/j.virol.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  40. Dang Y, Yang Q, Xue Z, Liu Y (2011) RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell 10:1148–1155. https://doi.org/10.1128/EC.05109-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Segers GC, Sun Q et al (2008) Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J Virol 82:2613–2619. https://doi.org/10.1128/JVI.02324-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Segers GC, Zhang X, Deng F et al (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA 104:12902–12906. https://doi.org/10.1073/pnas.0702500104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Q, Choi GH, Nuss DL (2009) A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci USA 106:17927–17932. https://doi.org/10.1073/pnas.0907552106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Donaire L, Wang Y, Gonzalez-Ibeas D et al (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214. https://doi.org/10.1016/j.virol.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  45. Schoebel CN, Botella L, Lygis V, Rigling D (2017) Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host. Mol Ecol. https://doi.org/10.1111/mec.14048

    Article  PubMed  Google Scholar 

  46. Berbegal M, Pérez-Sierra A, Armengol J, Grünwald NJ (2013) Evidence for multiple introductions and clonality in Spanish populations of Fusarium circinatum. Phytopathology 103:851–861. https://doi.org/10.1094/PHYTO-11-12-0281-R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Instituto Agroforestal Mediterráneo (Universidad Politécnica de Valencia) for providing the isolates Va70, FC5, FC13, FC14, FC20 and FC24. The authors also thank Diana Bezos for performing the morphological and molecular identification of the isolates FC122, FC179, FC213 and FC921, Milagros de Vallejo and Juan Blanco (Gobierno de Cantabria) for their help in carrying out the study, and Elena Hidalgo (iuFOR, UVa-INIA), María Teresa Pérez-García, Pilar Cidad and Marycarmen Arévalo (IBGM, UVa-CSIC) for their collaboration and valuable advice during laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Muñoz-Adalia.

Ethics declarations

Funding

This study was supported by two research projects: AGL2015-69370-R “Next Generation Sequencing NGS) technologies for the study of Fusarium circinatum mycoviruses” (MINECO/FEDER, UE) and AGL2012-39912 “Biological control of Pine Pitch Canker disease by the use of Fusarium circinatum mycoviruses” (Ministerio Economía y Competitividad). This article is based upon work from COST Action FP1406 PINESTRENGTH (Pine pitch canker - strategies for management of Gibberella circinata in greenhouses and forests), supported by COST (European Cooperation in Science and Technology). E. J. Muñoz-Adalia is a receipt of grants from the European Social Fund and from the Consejería de Educación de Castilla y León (JCyL) (ORDEN EDU/1083/2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Robert H.A. Coutts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Adalia, E.J., Diez, J.J., Fernández, M.M. et al. Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum. Arch Virol 163, 1009–1018 (2018). https://doi.org/10.1007/s00705-018-3712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3712-2

Navigation