Skip to main content
Log in

Complete genome sequence of a novel bacteriophage, PBKP05, infecting Klebsiella pneumoniae

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

A Correction to this article was published on 21 June 2019

This article has been updated

Abstract

An increasing number of Klebsiella pneumoniae isolates have been found to be multi-drug resistant. A novel bacteriophage, PBKP05, which infects K. pneumoniae, was isolated and characterized. It has a linear double-stranded DNA genome of 30,240 base pairs in length. Its G+C content is 53%, and 47 putative open reading frames are functionally annotated. This phage can be a candidate material for phage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 21 June 2019

    Unfortunately, the original article was published with incorrect accession number and the correct version is updated here.

References

  1. Wyres KL, Holt KE (2018) Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 45:131–139

    Article  CAS  PubMed  Google Scholar 

  2. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308

    Article  CAS  PubMed  Google Scholar 

  3. Navon-Venezia S, Kondratyeva K, Carattoli A (2017) Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 41:252–275

    Article  CAS  PubMed  Google Scholar 

  4. Rozwandowicz M, Brouwer MSM, Fischer J et al (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73(5):1121–1137

    Article  CAS  PubMed  Google Scholar 

  5. Fritzenwanker M, Imirzalioglu C, Herold S et al (2018) Treatment options for carbapenem- resistant Gram-negative infections. Dtsch Arztebl Int 115(20–21):345–352

    PubMed  PubMed Central  Google Scholar 

  6. Krapp F, Ozer EA, Qi C et al (2018) Case report of an extensively drug-resistant Klebsiella pneumoniae infection with genomic characterization of the strain and review of similar cases in the United States. Open Forum Infect Dis 5(5):ofy074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chong Y, Shimoda S, Shimono N (2018) Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol 61:185–188

    Article  Google Scholar 

  8. Domingo-Calap P, Delgado-Martínez J (2018) Bacteriophages: protagonists of a post-antibiotic era. Antibiotics (Basel) 7(3):E66

    Article  Google Scholar 

  9. Cha K, Oh HK, Jang JY, Jo Y, Kim WK, Ha GU, Ko KS, Myung H (2018) Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front Microbiol 9:696

    Article  PubMed  PubMed Central  Google Scholar 

  10. São-José C (2018) Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. Antibiotics (Basel) 7(2):E29

    Article  CAS  Google Scholar 

  11. Maciejewska B, Olszak T, Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 102(6):2563–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gelman D, Eisenkraft A, Chanishvili N et al (2018) The history and promising future of phage therapy in the military service. J Trauma Acute Care Surg 85(1S Suppl 2):S18–S26

    PubMed  Google Scholar 

  13. Pallavali RR, Degati VL, Lomada D et al (2017) Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 12(7):e0179245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chadha P, Katare OP, Chhibber S (2017) Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43(7):1532–1543

    Article  PubMed  Google Scholar 

  15. Aleshkin AV, Ershova ON, Volozhantsev NV et al (2016) Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage 6(4):e1251379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chadha P, Katare OP, Chhibber S (2016) In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb Pathog 99:68–77

    Article  CAS  PubMed  Google Scholar 

  17. Mattila S, Ruotsalainen P, Jalasvuori M (2015) On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol 6:1271

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao F, Wang X, Wang L et al (2015) Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed Res Int 2015:752930

    PubMed  PubMed Central  Google Scholar 

  19. Hong SS, Jeong J, Lee J, Kim S, Min W, Myung H (2013) Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J Microbiol Biotechnol 23:1478–1483

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook J, Russell DW (2006) Purification of bacteriophage lambda particles by centrifugation through a glycerol step gradient. CSH Protoc. https://doi.org/10.1101/pdb.prot3969

    Article  PubMed  Google Scholar 

  21. Manfioletti G, Schneider C (1988) A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res 16:2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao S, Linden SB, Nelson DC (2017) Complete genome sequence of Klebsiella pneumoniae phages SopranoGao, MezzoGao, and AltoGao. Genome Announc 5(45):e01009-17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Born Y, Fieseler L, Marazzi J, Lurz R, Duffy B, Loessner MJ (2011) Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. Appl Environ Microbiol 77(17):5945–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Research Foundation (NRF) of Korea Funds 2017M3A9B8069292 and ATC Program 10076996 from the Ministry of Trade, Industry, and Energy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heejoon Myung.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval

This study does not contain any subjects with human participants or animals performed by the authors.

Additional information

Handling Editor: Johannes Wittmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 520 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H.K., Cha, K., Hwang, Y.J. et al. Complete genome sequence of a novel bacteriophage, PBKP05, infecting Klebsiella pneumoniae. Arch Virol 164, 885–888 (2019). https://doi.org/10.1007/s00705-018-04121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-04121-9

Navigation