Skip to main content
Log in

A novel passerivirus (family Picornaviridae) in an outbreak of enteritis with high mortality in estrildid finches (Uraeginthus sp.)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

An enteric outbreak with high mortality (34/52, 65.4%) was recorded in 2014 in home-reared estrildid finches (Estrildidae) in Hungary. A novel passerivirus was identified in a diseased violet-eared waxbill using viral metagenomics and confirmed by RT-(q)PCR. The complete genome of finch picornavirus strain waxbill/DB01/HUN/2014 (MF977321) showed the highest amino acid sequence identity of 38.9%, 61.6%, 69.6% in P1cap, 2Chel and 3CproDpol, respectively, to passerivirus A1 (GU182406). A high viral load (6.58 × 1010 genomic copies/ml) was measured in a cloacal specimen and in the tissues (spinal cord, lung, and the intestines) of two additional affected finches. In addition to intestinal symptoms (diarrhoea), the presence of extra-intestinal virus suggests a generalized infection in this fatal disease, for which the passerivirus might be a causative agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Knowles NJ, Hovi T, Hyypiä T et al (2012) Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 855–880

    Google Scholar 

  2. Sasaki J, Nagashima S, Taniguchi K (2003) Aichi virus leader protein is involved in viral RNA replication and encapsidation. J Virol 77:10799–10807

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hellen CU, de Breyne S (2007) A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol 81:5850–5863

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sweeney TR, Dhote V, Yu Y, Hellen CU (2012) A distinct class of internal ribosomal entry site in members of the Kobuvirus and proposed Salivirus and Paraturdivirus genera of the Picornaviridae. J Virol 86:1468–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Asnani M, Kumar P, Hellen CUT (2015) Widespread distribution and structural diversity of type IV IRESs in members of Picornaviridae. Virology 478:61–74

    CAS  PubMed  Google Scholar 

  6. Pankovics P, Boros Á, Kiss T et al (2015) Identification and complete genome analysis of kobuvirus in faecal samples of European roller (Coracias garrulus): for the first time in a bird. Arch Virol 160:345–351

    CAS  PubMed  Google Scholar 

  7. Paul A, Wimmer E (2015) Initiation of protein-primed picornavirus RNA synthesis. Virus Res 206:12–16

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Woo PC, Lau SK, Choi GK et al (2012) Natural occurrence and characterization of two internal ribosomal entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J Virol 86:2797–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reuter G, Boros Á, Földvár G et al (2017) Dicipivirus (family Picornaviridae) in wild Northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol (article in press)

  10. Palmenberg A, Neubauer D, Skern T (2010) Genome organization and encoded proteins. In: Ehrenfeld E, Domingo E, Roos RP (eds) The Picornaviruses. ASM Press, Washington, DC

    Google Scholar 

  11. Flather D, Semler BL (2015) Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 6:594–621

    PubMed  PubMed Central  Google Scholar 

  12. Pankovics P, Boros Á, Tóth Z et al (2017) Genetic characterization of a second novel picornavirus from and amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 162:1043–1050

    CAS  PubMed  Google Scholar 

  13. McKnight KL, Lemon SM (1998) The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4:1569–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Yi M, Evans DJ et al (2008) Identification of a conserved RNA replication element (cre) within the 3Dpol-coding sequence of hepatoviruses. J Virol 82:10118–10128

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Steil BP, Barton DJ (2009) Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 139:240–252

    CAS  PubMed  Google Scholar 

  16. Boros Á, Pankovics P, Reuter G (2014) Avian picornaviruses: Molecular evolution, genome diversity and unusual genome features of a rapidly expanding group of viruses in birds. Infect Genet Evol 28:151–166

    CAS  PubMed  Google Scholar 

  17. Ericson PGP, Johansson US (2003) Phylogeny of Passerida (Aves: Passeriformes) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol 29:126–138

    CAS  PubMed  Google Scholar 

  18. Arnaiz-Villena A, Ruiz-del-Valle V, Gomez-Prieto P et al (2009) Estrildinae finches (Aves, Passeriformes) from Africa, South Asia and Australia: a molecular phylogeographic study. Open Ornithol J 2:29–36

    CAS  Google Scholar 

  19. Clement P, Harris P, Davies J (1993) Finches and sparrows. An Identification guide. Christopher Helm, London

    Google Scholar 

  20. Phan TG, Vo NP, Boros Á et al (2013) The viruses of wild pigeon droppings. PLoS One 8:e72787

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Victoria JG, Kapoor A, Li L et al (2009) Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83:4642–4651

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–535

    CAS  PubMed  Google Scholar 

  23. Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–650

    CAS  PubMed  Google Scholar 

  24. Boros Á, Cs Nemes, Pankovics P et al (2012) Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). J Gen Virol 93:2171–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  27. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11:129

    Google Scholar 

  28. Lorenz R, Bernhart SH, Höner zu Siederdissen C et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    PubMed  PubMed Central  Google Scholar 

  29. Bullman S, Kearney K, O’Mahony M et al (2014) Identification and genetic characterization of novel picornavirus from chickens. J Gen Virol 95:1094–1103

    CAS  PubMed  Google Scholar 

  30. Kozak M (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jang SK, Pestova TV, Hellen CU et al (1990) Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44:292–309

    CAS  PubMed  Google Scholar 

  32. Pilipenko EV, Gmyl AP, Maslova SV et al (1992) Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68:119–131

    CAS  PubMed  Google Scholar 

  33. Reuter G, Pankovics P, Boros Á (2017) Saliviruses – the first knowledge about a newly discovered human picornavirus. Rev Med Virol 27:1–10

    Google Scholar 

  34. Woo PC, Lau SK, Huang Y et al (2010) Comparative analysis of six genome sequences of three novel picornaviruses, turdiviruses 1, 2 and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and Paraturdivirus, in the family Picornaviridae. J Gen Virol 91:2433–2448

    CAS  PubMed  Google Scholar 

  35. Phan TG, Kapusinszky B, Wang C et al (2011) The fecal viral flora of wild rodents. PLoS Pathog 7:e1002218

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pankovics P, Boros Á, Bíró H et al (2015) Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. domestica). Infect Genet Evol 37:117–122

    PubMed  PubMed Central  Google Scholar 

  37. Reuter G, Boldizsár Á, Pankovics P (2009) Complete nucleotide and amino acid sequences and genetic organization of porcine kobuvirus, a member of a new species in the genus Kobuvirus, family Picornaviridae. Arch Virol 154:101–108

    CAS  PubMed  Google Scholar 

  38. Botstein D (1980) A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–490

    CAS  PubMed  Google Scholar 

  39. Belsham GJ, Sonenberg N (2000) Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8:330–335

    CAS  PubMed  Google Scholar 

  40. Reuter G, Boros A, Pankovics P et al (2010) Kobuvirus in domestic sheep, Hungary. Emerg Infect Dis 16:869–870

    PubMed  PubMed Central  Google Scholar 

  41. Chen HH, Kong WP, Roos RP (1995) The leader peptide of Theiler’s murine encephalomyelitis virus is a zinc-binding protein. J Virol 69:8076–8078

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sasaki J, Nagashima S, Taniguchi K (2003) Aichi virus leader protein is involved in viral RNA replication and encapsidation. J Virol 77:10799–10807

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tseng CH, Tsai HJ (2007) Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. Virus Res 129:104–114

    CAS  PubMed  Google Scholar 

  44. Lau SKP, Woo PCY, Lai KKY et al (2011) Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol 85:8819–8828

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang C, Vernon R, Lange O et al (2010) Prediction of structures of zinc-binding proteins through explicit modelling of metal coordination geometry. Protein Sci 19:494–506

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Prattis SM, Cioffee CJ, Reinhard G et al (1990) A retrospective study of disease and mortality in zebra finches. Lab Anim Sci. 40:402–405

    CAS  PubMed  Google Scholar 

Web references

  1. Knowles NJ (2017) The picornavirus pages. http://www.picornaviridae.com. Accessed 21 Aug 2017

  2. Handbook of the Birds of the World Alive (HBV). http://www.hbw.com/order/passeriformes. Accessed 21 Aug 2017

  3. Integrated Taxonomic Information System (ITIS). https://www.itis.gov/. Accessed: 21 Aug 2017

  4. The Internet IBC Bird Collection. http://www.hbw.com/ibc/family/waxbills-estrildidae. Accessed 21 Aug 2017

  5. International Committee on Taxonomy of Viruses (ICTV), Picornaviridae Study Group. http://www.picornastudygroup.com/definitions/genus_definition.htm. Accessed 21 Aug 2017

Download references

Acknowledgements

The authors especially thank Tibor Jantyik for providing the dead estrildid finches and for his helpful comments. Thanks to Béla Markos (Animal Health Veterinary Laboratory LTD.) for giving laboratory information about the birds that were examined. This work was supported by grants from the Hungarian Scientific Research Fund (OTKA/NKFIH K111615). P.P and B.Á. were supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Reuter.

Ethics declarations

Funding

This study funded by Hungarian Scientific Research Fund (OTKA/NKFIH K111615) by the Hungarian Nature Research Society.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: Diego G. Diel.

The GenBank[/EMBL/DDBJ] accession number for the study sequence: MF977321-MF977323.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankovics, P., Boros, Á., Phan, T.G. et al. A novel passerivirus (family Picornaviridae) in an outbreak of enteritis with high mortality in estrildid finches (Uraeginthus sp.). Arch Virol 163, 1063–1071 (2018). https://doi.org/10.1007/s00705-017-3699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3699-0

Keywords

Navigation