Archives of Virology

, Volume 163, Issue 4, pp 821–830 | Cite as

Enemies with benefits: mutualistic interactions of viruses with lower eukaryotes

  • Shounak S. Jagdale
  • Rakesh S. Joshi


Viruses represent some of the deadliest pathogens known to science. Recently they have been reported to have mutualistic interactions with their hosts, providing them direct or indirect benefits. The mutualism and symbiogenesis of such viruses with lower eukaryotic partners such as fungi, yeast, and insects have been reported but the full mechanism of interaction often remains an enigma. In many instances, these viral interactions provide resistance against several biotic and abiotic stresses, which could be the prime reason for the ecological success and positive selection of the hosts. These viruses modulate host metabolism and behavior, so both can obtain maximum benefits from the environment. They bring about micro- and macro-level changes in the hosts, benefiting their adaptation, reproduction, development, and survival. These virus-host interactions can be bilateral or tripartite with a variety of interacting partners. Exploration of these interactions can shed light on one of the well-coordinated biological phenomena of co-evolution and can be highly utilized for various applications in agriculture, fermentation and the pharmaceutical industries.



Authors acknowledge Dr. Tuli Dey, Dr. Rohan Khadilkar and Dr. Sneha Bansode for their critical comments. Authors also acknowledge Ms. Yoshita Bhide and Ms. Shriya Lele for their editorial assistance.

Author contributions

The concept was developed and articulated by SSJ and RSJ. Manuscript was written and edited by SSJ and RSJ.


Financial support is provided by the research grant from Department of Science and Technology, Government of India under ECR/2015/000502 Grant and Savitribai Phule Pune University, Pune 411007, Maharashtra India.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108CrossRefPubMedGoogle Scholar
  2. 2.
    Margulis L, Sagan D (2008) Acquiring genomes: a theory of the origins of species. Basic Books, New YorkGoogle Scholar
  3. 3.
    Goic B, Saleh MC (2012) Living with the enemy: viral persistent infections from a friendly viewpoint. Curr Opin Microbiol 15:531–537CrossRefPubMedGoogle Scholar
  4. 4.
    Bao X, Roossinck MJ (2013) Multiplexed interactions: viruses of endophytic fungi. Adv Virus Res 86:37–58CrossRefPubMedGoogle Scholar
  5. 5.
    Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581CrossRefPubMedGoogle Scholar
  6. 6.
    Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515CrossRefPubMedGoogle Scholar
  7. 7.
    Morsy MR, Oswald J, He J, Tang Y, Roossinck MJ (2010) Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 401:225–230CrossRefPubMedGoogle Scholar
  8. 8.
    Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441CrossRefPubMedGoogle Scholar
  9. 9.
    Isenor M, Kaminskyj SG, Rodriguez RJ, Redman RS, Gough KM (2010) Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy. Analyst 135:3249–3254CrossRefPubMedGoogle Scholar
  10. 10.
    Muñoz-Clares RA, Díaz-Sánchez ÁG, González-Segura L, Montiel C (2010) Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Arch Biochem Biophys 493:71–81CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenberg NK, Lee RW, Yancey PH (2006) High contents of hypotaurine and thiotaurine in hydrothermal-vent gastropods without thiotrophic endosymbionts. J Exp Zool A Ecol Genet Physiol 305:655–662CrossRefGoogle Scholar
  12. 12.
    Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rodriguez RJ, Woodward C, Kim YO, Redman RS (2009) Habitat-adapted symbiosis as a defense against abiotic and biotic stresses. In: White JF Jr, Torres MS (eds) Defensive mutualism in microbial symbiosis, vol 26. CRC Press, Boca Raton, pp 335–346Google Scholar
  14. 14.
    Al-Hamdani S, Stoelting A, Morsy M (2014) Influence of symbiosis between fungus, virus, and tomato plant in combating heat stress. J Ala Acad Sci 85:150–160Google Scholar
  15. 15.
    Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276CrossRefPubMedGoogle Scholar
  16. 16.
    Hanes SD, Burn VE, Sturley SL, Tipper DJ, Bostian KA (1986) Expression of a cDNA derived from the yeast killer preprotoxin gene: implications for processing and immunity. Proc Natl Acad Sci USA 83:1675–1679CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY (1991) Expression in yeast of a cDNA copy of the K2 killer toxin gene. Mol Gen Genet 227:127–136CrossRefPubMedGoogle Scholar
  18. 18.
    Schmitt MJ, Tipper DJ (1995) Sequence of the M28 dsRNA: preprotoxin is processed to an α/β heterodimeric protein toxin. Virology 213:341–351CrossRefPubMedGoogle Scholar
  19. 19.
    Icho T, Wickner RB (1989) The double-stranded RNA genome of yeast virus LA encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264:6716–6723PubMedGoogle Scholar
  20. 20.
    Wickner RB (1996) Prions and RNA viruses of Saccharomyces cerevisiae. Annu Rev Genet 30:109–139CrossRefPubMedGoogle Scholar
  21. 21.
    Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxin: involvement of [1→ 6]-β-D-glucan. J Bacteriol 154:161–169PubMedPubMedCentralGoogle Scholar
  22. 22.
    Schmitt M, Radler F (1988) Molecular structure of the cell wall receptor for killer toxin KT28 in Saccharomyces cerevisiae. J Bacteriol 170:2192–2196CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405CrossRefPubMedGoogle Scholar
  24. 24.
    Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37:926–940CrossRefPubMedGoogle Scholar
  25. 25.
    de la Peña P, Barros F, Gascón S, Lazo PS, Ramos S (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256:10420–10425PubMedGoogle Scholar
  26. 26.
    Martinac B, Zhu H, Kubalski A, Zhou XL, Culbertson M, Bussey H et al (1990) Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci USA 87:6228–6232CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SA (1999) A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99:283–291CrossRefPubMedGoogle Scholar
  28. 28.
    Schmitt MJ, Klavehn P, Wang J, Schönig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiol 142:2655–2662CrossRefGoogle Scholar
  29. 29.
    Tao JI, Ginsberg ID, Banerjee NA, Held W, Koltin YI, Bruenn JA (1990) Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol 10:1373–1381CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tercero JC, Wickner RB (1992) MAK3 encodes an N-acetyltransferase whose modification of the LA gag NH2 terminus is necessary for virus particle assembly. J Biol Chem 267:20277–20281PubMedGoogle Scholar
  31. 31.
    Fujimura TS, Wickner RB (1987) LA double-stranded RNA virus-like particle replication cycle in Saccharomyces cerevisiae: particle maturation in vitro and effects of mak10 and pet18 mutations. Mol Cell biol 7:420–426CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bussey H, Saville D, Greene D, Tipper DJ, Bostian KA (1983) Secretion of Saccharomyces cerevisiae killer toxin: processing of the glycosylated precursor. Mol Cell Biol 3:1362–1370CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhu YS, Zhang XY, Cartwright CP, Tipper DJ (1992) Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol 6:511–520CrossRefPubMedGoogle Scholar
  34. 34.
    Boone C, Sdicu AM, Wagner J, Degre R, Sanchez C, Bussey H (1990) Integration of the yeast K1 killer toxin gene into the genome of marked wine yeasts and its effect on vinification. Am J Enol Vitic 41:37–42Google Scholar
  35. 35.
    Radler F, Schmitt MJ, Meyer B (1990) Killer toxin of Hanseniaspora uvarum. Arch Microbiol 154:175–178CrossRefPubMedGoogle Scholar
  36. 36.
    Weiler F, Schmitt MJ (2003) Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 3:69–76PubMedGoogle Scholar
  37. 37.
    Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221CrossRefPubMedGoogle Scholar
  38. 38.
    Webb BA (1998) Polydnavirus biology, genome structure, and evolution. In: The insect viruses. Springer, US, pp 105–139CrossRefGoogle Scholar
  39. 39.
    Tanaka T (1987) Morphological changes in haemocytes of the host, Pseudaletia separata, parasitized by Microplitis mediator or Apanteles kariyai. Dev Comp Immunol 11:57–67CrossRefPubMedGoogle Scholar
  40. 40.
    Strand MR, Pech LL (1995) Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens. J Gen Virol 76:283–291CrossRefPubMedGoogle Scholar
  41. 41.
    Espagne E, Dupuy C, Huguet E, Cattolico L, Provost B, Martins N et al (2004) Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306:286–289CrossRefPubMedGoogle Scholar
  42. 42.
    Whitfield JB (2002) Estimating the age of the polydnavirus/braconid wasp symbiosis. Proc Natl Acad Sci USA 99:7508–7513CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stoltz D, Whitefield J (2009) Making Nice with Viruses. Science 323:884–885CrossRefPubMedGoogle Scholar
  44. 44.
    Gasmi L, Boulain H, Gauthier J, Hua-Van A, Musset K, Jakubowska AK et al (2015) Recurrent domestication by Lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genet 11:e1005470CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stasiak K, Renault S, Federici BA, Bigot Y (2005) Characteristics of pathogenic and mutualistic relationships of ascoviruses in field populations of parasitoid wasps. J Insect Physiol 51:103–115CrossRefPubMedGoogle Scholar
  46. 46.
    Renault S, Stasiak K, Federici B, Bigot Y (2005) Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. J Insect Physiol 51:137–148CrossRefPubMedGoogle Scholar
  47. 47.
    Maure F, Brodeur J, Ponlet N, Doyon J, Firlej A, Elguero É, Thomas F (2011) The cost of a bodyguard. Biol Lett 7:843–846Google Scholar
  48. 48.
    Dheilly NM, Maure F, Ravallec M, Galinier R, Doyon J, Duval D et al (2015) Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc R Soc Lond B Biol Sci 282:20142773CrossRefGoogle Scholar
  49. 49.
    Xu P, Liu Y, Graham RI, Wilson K, Wu K (2014) Densovirus is a mutualistic symbiont of a global crop pest Helicoverpa armigera and protects against a baculovirus and Bt biopesticide. PLoS Pathog 10:e1004490CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Belliure B, Janssen A, Maris PC, Peters D, Sabelis MW (2005) Herbivore arthropods benefit from vectoring plant viruses. Ecol Lett 8:70–79CrossRefGoogle Scholar
  51. 51.
    Ghosh A, Das A, Vijayanandaraj S, Mandal B (2015) Cardamom bushy dwarf virus infection in large cardamom alters plant selection preference, life stages, and fecundity of aphid vector, Micromyzus kalimpongensis (Hemiptera: Aphididae). Environ Entomol 45:178–184CrossRefPubMedGoogle Scholar
  52. 52.
    Weldon SR, Oliver KM (2016) Diverse bacteriophage roles in an aphid-bacterial defensive mutualism. In: Hurst C (ed) The mechanistic benefits of microbial symbionts. Advances in environmental microbiology, vol 2. Springer, Cham, pp 173–206Google Scholar
  53. 53.
    Digilio MC, Isidoro N, Tremblay E, Pennacchio F (2000) Host castration by Aphidius ervi venom proteins. J Insect Physiol 46:1041–1050CrossRefPubMedGoogle Scholar
  54. 54.
    Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schmid M, Sieber R, Zimmermann YS, Vorburger C (2012) Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Funct Ecol 26:207–215CrossRefGoogle Scholar
  56. 56.
    Asplen MK, Bano N, Brady CM, Desneux N, Hopper KR, Malouines C et al (2014) Specialisation of bacterial endosymbionts that protect aphids from parasitoids. Ecol Entomol 39:736–739CrossRefGoogle Scholar
  57. 57.
    van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel JF (1999) Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262:104–113CrossRefPubMedGoogle Scholar
  58. 58.
    Degnan PH, Moran NA (2008) Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol 74:6782–6791CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ohara M, Oswald E, Sugai M (2004) Cytolethal distending toxin: a bacterial bullet targeted to nucleus. J Biochem 136:409–413CrossRefPubMedGoogle Scholar
  60. 60.
    Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T, Igarashi K (1988) Site of action of a Vero toxin (VT2) from Escherichia coli O157: H7 and of Shiga toxin on eukaryotic ribosomes. Eur J Biochem 171:45–50CrossRefPubMedGoogle Scholar
  61. 61.
    Weldon SR, Strand MR, Oliver KM (2013) Phage loss and the breakdown of a defensive symbiosis in aphids. Proc R Soc Lond B Biol Sci 280:20122103CrossRefGoogle Scholar
  62. 62.
    Duron O (2014) Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol Ecol 90:184–194CrossRefPubMedGoogle Scholar
  63. 63.
    Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119CrossRefPubMedGoogle Scholar
  64. 64.
    Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P et al (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 8:e1002735CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D et al (2014) A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog 10:e1004230CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Flenniken ML, Andino R (2013) Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS One 8:e77263CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P, Zanni V et al (2016) A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc Natl Acad Sci USA. 7:201523515Google Scholar
  68. 68.
    Thomas-Orillard M (1996) A virus-Drosophila association: the first steps towards co-evolution? Biodivers Conserv 5:1015–1021CrossRefGoogle Scholar
  69. 69.
    Park CM, Banerjee N, Koltin Y, Bruenn JA (1996) The Ustilago maydis virally encoded KP1 killer toxin. Mol Microbiol 20:957–963CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gage MJ, Bruenn J, Fischer M, Sanders D, Smith TJ (2001) KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol Microbiol 41:775–785CrossRefPubMedGoogle Scholar
  71. 71.
    Theisen S, Molkenau E, Schmitt MJ (2000) Wicaltin, a new protein toxin secreted by the yeast Williopsis californica and its broad-spectrum antimycotic potential. J Microbiol Biotechnol 10:547–550  CrossRefPubMedGoogle Scholar
  72. 72.
    Edson KM, Vinson SB, Stoltz DB, Summers MD (1981) Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host. Science 211:582–583CrossRefPubMedGoogle Scholar
  73. 73.
    Burke GR, Walden KK, Whitfield JB, Robertson HM, Strand MR (2014) Widespread genome reorganization of an obligate virus mutualist. PLoS Genet 10:e1004660CrossRefPubMedGoogle Scholar
  74. 74.
    Bao X, Roossnick MJ (2013) A life history view of mutualistic viral symbioses: quantity or quality for cooperation? Curr Opin Microbiol 16:514–518CrossRefPubMedGoogle Scholar
  75. 75.
    ​Maiti IB, Dey N, Pattanaik S, Dahlman DL, Rana RL, Webb BA (2003) Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol J 1:209–219Google Scholar
  76. 76.
    Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204:472–479CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Bioinformatics and BiotechnologySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations