Archives of Virology

, Volume 163, Issue 3, pp 639–647 | Cite as

Gene expression profile and long non-coding RNA analysis, using RNA-Seq, in chicken embryonic fibroblast cells infected by avian leukosis virus J

  • Xuming Hu
  • Shihao Chen
  • Chongxin Jia
  • Songlei Xue
  • Chunfeng Dou
  • Zhenqing Dai
  • Hui Xu
  • Zhen Sun
  • Tuoyu Geng
  • Hengmi Cui
Original Article


Avian leukosis virus J (ALVJ) infection induces hematopoietic malignancy in myeloid leukemia and hemangioma in chickens. However, little is known about the mechanisms underpinning the unique pathogenesis of ALVJ. In this study, we investigated the gene expression profiles of ALVJ-infected chicken cells and performed a comprehensive analysis of the long non-coding RNAs (lncRNAs) in CEF cells using RNA-Seq. As a result, 36 differentially expressed lncRNAs and 91 genes (FC > 2 and q-values < 0.05) were identified. Bioinformatics analysis revealed that these differentially expressed genes are involved in the innate immune response. Target prediction analysis revealed that these lncRNAs may act in cis or trans and affect the expression of genes which are involved in the anti-viral innate immune responses. Toll-like receptor, RIG-I receptor, NOD-like receptor and JAK-STAT signaling pathways were enriched. Notably, the induced expression of innate immunity genes, including B2M, DHX58, IFI27L2, IFIH1, IRF10, ISG12(2), MX, OAS*A, RSAD2, STAT1, TLR3, IL4I1, and IRF1 (FC > 2 and correlation > 0.95), were highly correlated with the upregulation of several lncRNAs, including MG066618, MG066617, MG066601, MG066629, MG066609 and MG066616. These findings identify the expression profile of lncRNAs in chicken CEF cells infected by ALVJ virus and provide new insights into the molecular mechanisms of ALVJ infection.



This research was supported by the National Natural Science Foundation of China (31602032, 81171965, 81372237 and 91540117), National Key Research and Development Program in China (2016YFC1303604) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Animal Science and Veterinary Medicine).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This study was performed in strict accordance with the recommendations provided in the Guide for the Care and Use of Laboratory Animals of Yangzhou University. The protocol was approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (License Number: 06R015). This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

705_2017_3659_MOESM1_ESM.xlsx (15 kb)
The differently expressed lncRNAs in chicken CEFs infected with ALVJ 1 (XLSX 14 kb)
705_2017_3659_MOESM2_ESM.xlsx (26 kb)
The differently expressed mRNAs in chicken CEFs infected with ALVJ 2 (XLSX 26 kb)


  1. 1.
    Feng M, Dai M, Xie T, Li Z, Shi M, Zhang X (2016) Innate immune responses in ALV-J infected chicks and chickens with hemangioma in vivo. Frontiers in microbiology 7:786PubMedPubMedCentralGoogle Scholar
  2. 2.
    Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hang B, Sang J, Qin A, Qian K, Shao H, Mei M, Ye J (2014) Transcription analysis of the response of chicken bursa of Fabricius to avian leukosis virus subgroup J strain JS09GY3. Virus Res 188:8–14CrossRefPubMedGoogle Scholar
  4. 4.
    Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J (2012) Analysis of protein expression profiles in the thymus of chickens infected with Marek’s disease virus. Virol J 9:256CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hu X, Zou H, Qin A, Qian K, Shao H, Ye J (2016) Activation of Toll-like receptor 3 inhibits Marek’s disease virus infection in chicken embryo fibroblast cells. Arch Virol 161:521–528CrossRefPubMedGoogle Scholar
  6. 6.
    Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol 14:315–328CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucl Acids Res 35:W345–W349CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, Ying SW, Keros S, Goldstein PA, Mostoslavsky G, Ordovas-Montanes J, Jouanguy E, Plancoulaine S, Tu E, Elkabetz Y, Al-Muhsen S, Tardieu M, Schlaeger TM, Daley GQ, Abel L, Casanova JL, Studer L, Notarangelo LD (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491:769–773PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lan X, Wang Y, Tian K, Ye F, Yin H, Zhao X, Xu H, Huang Y, Liu H, Hsieh JC, Lamont SJ, Zhu Q (2017) Integrated host and viral transcriptome analyses reveal pathology and inflammatory response mechanisms to ALV-J injection in SPF chickens. Sci Rep 7:46156CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559CrossRefGoogle Scholar
  11. 11.
    Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439CrossRefPubMedGoogle Scholar
  12. 12.
    Li H, Ji J, Xie Q, Shang H, Zhang H, Xin X, Chen F, Sun B, Xue C, Ma J, Bi Y (2012) Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus. Virus Res 169:268–271CrossRefPubMedGoogle Scholar
  13. 13.
    Li H, Shang H, Shu D, Zhang H, Ji J, Sun B, Li H, Xie Q (2014) gga-miR-375 plays a key role in tumorigenesis post subgroup J avian leukosis virus infection. PLoS One 9:e90878CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li Z, Chen B, Feng M, Ouyang H, Zheng M, Ye Q, Nie Q, Zhang X (2015) MicroRNA-23b promotes avian leukosis virus subgroup J (ALV-J) replication by targeting IRF1. Sci Rep 5:10294CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li Z, Luo Q, Xu H, Zheng M, Abdalla BA, Feng M, Cai B, Zhang X, Nie Q, Zhang X (2017) MiR-34b-5p suppresses melanoma differentiation-associated gene 5 (MDA5) signaling pathway to promote avian leukosis virus subgroup J (ALV-J)-infected cells proliferaction and ALV-J replication. Front Cell Infect Microbiol 7:17PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–i282CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu D, Qiu Q, Zhang X, Dai M, Qin J, Hao J, Liao M, Cao W (2016) Infection of chicken bone marrow mononuclear cells with subgroup J avian leukosis virus inhibits dendritic cell differentiation and alters cytokine expression. Infect Genet Evolut 44:130–136CrossRefGoogle Scholar
  18. 18.
    Magor KE, Miranzo Navarro D, Barber MR, Petkau K, Fleming-Canepa X, Blyth GA, Blaine AH (2013) Defense genes missing from the flight division. Dev Comp Immunol 41:377–388CrossRefPubMedGoogle Scholar
  19. 19.
    Mei M, Ye J, Qin A, Wang L, Hu X, Qian K, Shao H (2015) Identification of novel viral receptors with cell line expressing viral receptor-binding protein. Sci Rep 5:7935CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Miao J, Bao Y, Ye J, Shao H, Qian K, Qin A (2015) Transcriptional profiling of host gene expression in chicken embryo fibroblasts infected with reticuloendotheliosis virus strain HA1101. PLoS One 10:e0126992CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ouyang J, Hu J, Chen JL (2016) lncRNAs regulate the innate immune response to viral infection. Wiley Interdiscip Rev RNA 7:129–143CrossRefPubMedGoogle Scholar
  22. 22.
    Payne LN, Nair V (2012) The long view: 40 years of avian leukosis research. Avian Pathol J WVPA 41:11–19CrossRefGoogle Scholar
  23. 23.
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucl Acids Res 40:D290–D301CrossRefPubMedGoogle Scholar
  24. 24.
    Qiu L, Li Z, Chang G, Bi Y, Liu X, Xu L, Zhang Y, Zhao W, Xu Q, Chen G (2017) Discovery of novel long non-coding RNAs induced by subgroup J avian leukosis virus infection in chicken. Dev Comp Immunol 76:292–302CrossRefPubMedGoogle Scholar
  25. 25.
    Scaria V, Pasha A (2012) Long non-coding RNAs in infection biology. Front Genetics 3:308Google Scholar
  26. 26.
    Schoggins JW (2014) Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol 6:40–46CrossRefPubMedGoogle Scholar
  27. 27.
    Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucl Acid Res 41:e166CrossRefGoogle Scholar
  28. 28.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Venugopal K (1999) Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses. Res Vet Sci 67:113–119CrossRefPubMedGoogle Scholar
  30. 30.
    Wu X, Qian K, Qin A, Shen H, Wang P, Jin W, Eltahir YM (2010) Recombinant avian leukosis viruses of subgroup J isolated from field infected commercial layer chickens with hemangioma and myeloid leukosis possess an insertion in the E element. Vet Res Commun 34:619–632CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Epigenetics and Epigenomics, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
  2. 2.Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
  3. 3.Institute of Comparative MedicineYangzhou UniversityYangzhouChina
  4. 4.Joint International Research Laboratory of Agricultural and Agri-Product SafetyYangzhou UniversityYangzhouChina

Personalised recommendations