Archives of Virology

, Volume 163, Issue 3, pp 587–597 | Cite as

Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells

  • Sanaz Baghban Rahimi
  • Alireza Mohebbi
  • Gelareh Vakilzadeh
  • Peyvand Biglari
  • Soodeh Razeghi Jahromi
  • Seyed Reza Mohebi
  • Sadegh Shirian
  • Ali Gorji
  • Amir Ghaemi
Original Article


To be effective, therapeutic cancer vaccines should stimulate both an effective cell-mediated and a robust cytotoxic CD8+ T-cell response against human papillomavirus (HPV)-infected cells to treat the pre-existing tumors and prevent potential future tumors. In this study, the therapeutic experiments were designed in order to evaluate antitumor effect against the syngeneic TC-1 tumor model. The anti-tumor efficacy of a HPV-16 E7 DNA vaccine adjuvanted with melatonin (MLT) was evaluated in a C57BL/6 mouse tumor model by measuring tumor growth post vaccination and the survival rate of tumor-bearing mice, analyzing the specific lymphocyte proliferation responses in control and vaccinated mice by MTT assay. The E7-specific cytotoxic T cells (CTL) were analyzed by lymphocyte proliferation and lactate dehydrogenates (LDH) release assays. IFN-γ, IL-4 and TNF-α secretion in splenocyte cultures as well as vascular endothelial growth factor (VEGF) and IL-10 in the tumor microenvironment were assayed by ELISA. Our results demonstrated that subcutaneous administration of C57BL/6 mice with a DNA vaccine adjuvanted with MLT dose-dependently and significantly induced strong HPV16 E7-specific CD8+ cytotoxicity and IFN-γ and TNF-α responses capable of reducing HPV-16 E7-expressing tumor volume. A significantly higher level of E7-specific T-cell proliferation was also found in the adjuvanted vaccine group. Furthermore, tumor growth was significantly inhibited when the DNA vaccine was combined with MLT and the survival time of TC-1 tumor bearing mice was also significantly prolonged. In vivo studies further demonstrated that MLT decreased the accumulation of IL-10 and VEGF in the tumor microenvironment of vaccinated mice. These data indicate that melatonin as an adjuvant augmented the cancer vaccine efficiency against HPV-associated tumors in a dose dependent manner.



Human papilloma virus




Antigen-presenting cell


Cytolytic T lymphocyte


Phosphate-buffered saline


Dendritic cells

IFN- γ

Interferon γ


Interleukin 4


Interleukin 12


Tumor necrosis factor


Polyvinylidene difluoride membranes


Lactate dehydrogenase


Cytotoxic T cells


3[4,5-Dimethylthiazol-2-ll]-2,5-diphenyltetrazolium bromide, thiazolyl-blue


Dimethyl sulfoxide


Optical density


Fetal bovine serum


1640 Roswell Park Memorial Institute (name of the medium)


Food and Drug Administration


T helper, vascular endothelial growth factor (VEGF)


Enzyme-linked immunosorbent assay



The authors would like to acknowledge Institute Pasteur of Iran and Golestan Medical University for the financial support. This project was extracted from a MSC thesis.

Compliance with ethical standards


This study was supported by Institute Pasteur of Iran and Research Deputy at Golestan Medical University through the Grant project number (35/21332).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal protocol used in this study was approved by the local animal ethics council of Golestan Ethic Committee of Golestan University of Medical Sciences (ethics number: et- 35/21332). All experimental procedures involving mice were performed in accordance with the national experimental guidelines.


  1. 1.
    Anisimov VN, Egormin PA, Piskunova TS, Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV, Karkach AS, Romanyukha AA (2010) Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle 9:188–197CrossRefPubMedGoogle Scholar
  2. 2.
    Aubert C, Janiaud P, Lecalvez J (1980) Effect of pinealectomy and melatonin on mammary tumor growth in Sprague-Dawley rats under different conditions of lighting. J Neural Transm 47:121–130CrossRefPubMedGoogle Scholar
  3. 3.
    Bahrami AA, Ghaemi A, Tabarraei A, Sajadian A, Gorji A, Soleimanjahi H (2014) DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice. J Virol Methods 206:12–18CrossRefPubMedGoogle Scholar
  4. 4.
    Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400CrossRefPubMedGoogle Scholar
  5. 5.
    Blask DE, Hill SM, Orstead KM, Massa JS (1986) Inhibitory effects of the pineal hormone melatonin and underfeeding during the promotional phase of 7,12-dimethylbenzanthracene-(DMBA)-induced mammary tumorigenesis. J Neural Transm 67:125–138CrossRefPubMedGoogle Scholar
  6. 6.
    Bush SH, Lacaze-Masmonteil N, McNamara-Kilian MT, MacDonald AR, Tierney S, Momoli F, Agar M, Currow DC, Lawlor PG (2016) The preventative role of exogenous melatonin administration to patients with advanced cancer who are at risk of delirium: study protocol for a randomized controlled trial. Trials 17:399CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Calvo JR, González-Yanes C, Maldonado M (2013) The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 55:103–120CrossRefPubMedGoogle Scholar
  8. 8.
    Carrillo-Vico A, Reiter RJ, Lardone PJ, Herrera JL, Fernández-Montesinos R, Guerrero JM, Pozo D (2006) The modulatory role of melatonin on immune responsiveness. Curr Opin Investig Drugs 7:423PubMedGoogle Scholar
  9. 9.
    Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cui P, Yu M, Peng X, Dong L, Yang Z (2012) Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression. J Pineal Res 52:236–243CrossRefPubMedGoogle Scholar
  11. 11.
    Dai M, Cui P, Yu M, Han J, Li H, Xiu R (2008) Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells. J Pineal Res 44:121–126CrossRefPubMedGoogle Scholar
  12. 12.
    Di Bella G, Mascia F, Gualano L, Di Bella L (2013) Melatonin anticancer effects: review. Int J Mol Sci 14:2410–2430CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, Ghaemi A (2016) Combination of the toll like receptor agonist and alpha-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci 23:16CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ghaemi A, Soleimanjahi H, Razeghi S, Gorji A, Tabaraei A, Moradi A, Alizadeh A, Vakili MA (2012) Genistein induces a protective immunomodulatory effect in a mouse model of cervical cancer. Iran J Immunol 9:119PubMedGoogle Scholar
  15. 15.
    Giuliano AR, Kreimer AR, de Sanjose S (2015) The beginning of the end: vaccine prevention of HPV-driven cancers. J Natl Cancer Inst 107(6):djv128CrossRefPubMedGoogle Scholar
  16. 16.
    Grant SG, Melan MA, Latimer JJ, Witt-Enderby PA (2009) Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev Mol Med 11:e5CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang X-Y (2013) Therapeutic cancer vaccines: past, present and future. Adv Cancer Res 119:421CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harden ME, Munger K (2016) Human papillomavirus molecular biology. Mutat Res Rev Mutat Res 772:3–12CrossRefPubMedGoogle Scholar
  19. 19.
    Jardim-Perassi BV, Arbab AS, Ferreira LC, Borin TF, Varma NR, Iskander A, Shankar A, Ali MM, de Campos Zuccari DAP (2014) Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One 9:e85311CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Karaki S, Pere H, Badoual C, Tartour E (2016) Hope in the long road toward the development of a therapeutic human papillomavirus vaccine. Clin Cancer Res 22:2317–2319CrossRefPubMedGoogle Scholar
  21. 21.
    Kawana K, Yasugi T, Taketani Y (2009) Human papillomavirus vaccines: current issues & future. Indian J Med Res 130(3):341–347PubMedGoogle Scholar
  22. 22.
    Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer lett 269:199–225CrossRefPubMedGoogle Scholar
  23. 23.
    Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni G (2001) Anti-angiogenic activity of melatonin in advanced cancer patients. Neuroendocrinol Lett 22:45–48PubMedGoogle Scholar
  24. 24.
    Liu H, Xu L, Wei JE, Xie MR, Wang SE, Zhou RX (2011) Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat Record 294:781–788CrossRefGoogle Scholar
  25. 25.
    Ma W, Melief CJ, van der Burg SH (2017) Control of immune escaped human papilloma virus is regained after therapeutic vaccination. Curr Opin Virol 23:16–22CrossRefPubMedGoogle Scholar
  26. 26.
    Markowitz LE, Liu G, Hariri S, Steinau M, Dunne EF, Unger ER (2016) Prevalence of HPV after introduction of the vaccination program in the United States. Pediatrics 137(3):e20151968CrossRefPubMedGoogle Scholar
  27. 27.
    Miller SC, Pandi PS, Esquifino AI, Cardinali DP, Maestroni GJ (2006) The role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol 87:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Moeini S, Saeidi M, Fotouhi F, Mondanizadeh M, Shirian S, Mohebi A, Gorji A, Ghaemi A (2017) Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Arch Virol 162:333–346CrossRefPubMedGoogle Scholar
  29. 29.
    Naderi M, Saeedi A, Moradi A, Kleshadi M, Zolfaghari MR, Gorji A, Ghaemi A (2013) Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virol Sin 28:167–173CrossRefPubMedGoogle Scholar
  30. 30.
    Rao GN, Ney E, Herbert RA (2000) Effect of melatonin and linolenic acid on mammary cancer in transgenic mice with c-neu breast cancer oncogene. Breast Cancer Res Treat 64:287–296CrossRefPubMedGoogle Scholar
  31. 31.
    Regodón S, Del Prado Míguez M, Jardín I, López JJ, Ramos A, Paredes SD, Rosado JA (2009) Melatonin, as an adjuvant-like agent, enhances platelet responsiveness. J Pineal Res 46:275–285CrossRefPubMedGoogle Scholar
  32. 32.
    Rondanelli M, Faliva MA, Perna S, Antoniello N (2013) Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep-wake and mood disturbances: review and remarks. Aging Clin Exp Res 25:499–510CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rosales R, Rosales C (2014) Immune therapy for human papillomaviruses-related cancers. World J clin Oncol 5:1002CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saeedi A, Ghaemi A, Tabarraei A, Moradi A, Gorji A, Semnani S, Soleimanjahi H, Adli AH, Hosseini SY, Vakili MA (2014) Enhanced cell immune responses to hepatitis C virus core by novel heterologous DNA prime/lambda nanoparticles boost in mice. Virus Genes 49:11–21CrossRefPubMedGoogle Scholar
  35. 35.
    Sainz R, Mayo J, Rodriguez C, Tan D, Lopez-Burillo S, Reiter R (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60:1407–1426CrossRefPubMedGoogle Scholar
  36. 36.
    Sajadian A, Tabarraei A, Soleimanjahi H, Fotouhi F, Gorji A, Ghaemi A (2014) Comparing the effect of Toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol 159:1951–1960CrossRefPubMedGoogle Scholar
  37. 37.
    Schernhammer ES, Giobbie-Hurder A, Gantman K, Savoie J, Scheib R, Parker LM, Chen WY (2012) A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control 23:609–616CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Singh M, Jadhav HR (2014) Melatonin: functions and ligands. Drug Discov Today 19:1410–1418CrossRefPubMedGoogle Scholar
  39. 39.
    Srinivasan V, Maestroni G, Rosenstein ER, Mohamed M (2012) Immune mechanism, aging, season and diseases: modulatory role of melatonin. Immunol Endocr Metab Agents Med Chem (Former Curr Med Chem Immunol Endocr Metab Agents) 12:289–302CrossRefGoogle Scholar
  40. 40.
    Szczepanik M (2007) Melatonin and its influence on immune system. J Physiol Pharmacol 58:115–124PubMedGoogle Scholar
  41. 41.
    Temizoz B, Kuroda E, Ishii KJ (2016) Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 28:329–338CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tommasino M (2014) The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 26:13–21CrossRefPubMedGoogle Scholar
  43. 43.
    Vakilzadeh G, Khodagholi F, Ghadiri T, Ghaemi A, Noorbakhsh F, Sharifzadeh M, Gorji A (2016) The Effect of Melatonin on Behavioral, Molecular, and Histopathological Changes in Cuprizone Model of Demyelination. Mol Neurobiol 53:4675–4684CrossRefPubMedGoogle Scholar
  44. 44.
    Valero N, Bonilla E, Pons H, Chacin-Bonilla L, Añez F, Espina LM, Medina-Leendertz S, Tamayo JG (2002) Melatonin induces changes to serum cytokines in mice infected with the Venezuelan equine encephalomyelitis virus. Trans R Soc Trop Med Hyg 96:348–351CrossRefPubMedGoogle Scholar
  45. 45.
    Vishwas DK, Haldar C (2013) Photoperiodic induced melatonin regulates immunity and expression pattern of melatonin receptor MT1 in spleen and bone marrow mononuclear cells of male golden hamster. J Photochem Photobiol B Biol 128:107–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Sanaz Baghban Rahimi
    • 1
  • Alireza Mohebbi
    • 1
    • 2
  • Gelareh Vakilzadeh
    • 3
    • 4
  • Peyvand Biglari
    • 2
  • Soodeh Razeghi Jahromi
    • 5
  • Seyed Reza Mohebi
    • 6
  • Sadegh Shirian
    • 7
  • Ali Gorji
    • 4
    • 8
  • Amir Ghaemi
    • 2
    • 9
  1. 1.Department of MicrobiologyGolestan University of Medical SciencesGorganIran
  2. 2.Department of VirologyPasteur Institute of IranTehranIran
  3. 3.Department of Neuroscience, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  4. 4.Shefa Neuroscience Research Center, Khatam Alanbia HospitalTehranIran
  5. 5.Shahid Beheshti University of Medical SciencesTehranIran
  6. 6.Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
  7. 7.Department of Pathology, School of Veterinary MedicineShahrekord UniversityShahrekordIran
  8. 8.Department of Neurosurgery and NeurologyWestfälische Wilhelms-Universität MünsterMünsterGermany
  9. 9.Department of Microbiology, Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran

Personalised recommendations