Skip to main content
Log in

PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

H5 clade 2.3.4.4 influenza A viruses pose a potential threat to public health and are a cause of public concern. Here, we generated mouse-adapted viruses of a waterfowl-origin H5N5 virus (H5 clade 2.3.4.4) to identify adaptive changes that confer increased virulence in mammals. After two passages, we obtained a mouse-adapted H5N5 virus that contained single amino acid substitutions in the PB2 (E627K) and hemagglutinin (HA) (F430L) proteins. We then analyzed the impact of these individual amino acid substitutions on viral pathogenicity to mammals. The 50% mouse lethal dose (MLD50) of the H5N5 virus containing the PB2-E627K substitution or the HA-F430L substitution was reduced 1000-fold or 3.16-fold, respectively. Furthermore, we found that PB2-E627K enhanced viral replication kinetics in vitro and in vivo. These results suggest that the PB2-E627K and HA-F430L substitutions are important for adaptation of H5N5 AIVs to mammals. These findings emphasize the importance of continued surveillance of poultry for H5N5 AIVs with these amino acid substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abed Y, Pizzorno A, Hamelin ME, Leung A, Joubert P, Couture C, Kobasa D, Boivin G (2011) The 2009 pandemic H1N1 D222G hemagglutinin mutation alters receptor specificity and increases virulence in mice but not in ferrets. J Infect Dis 204:1008–1016

    Article  CAS  PubMed  Google Scholar 

  2. Arafa AS, Naguib MM, Luttermann C, Selim AA, Kilany WH, Hagag N, Samy A, Abdelhalim A, Hassan MK, Abdelwhab EM, Makonnen Y, Dauphin G, Lubroth J, Mettenleiter TC, Beer M, Grund C, Harder TC (2015) Emergence of a novel cluster of influenza A(H5N1) virus clade 2.2.1.2 with putative human health impact in Egypt, 2014/15. Euro surveillance : bulletin Europeen sur les maladies transmissibles Eur Commu Dis Bull 20:2–8

    CAS  Google Scholar 

  3. Belser JA, Jayaraman A, Raman R, Pappas C, Zeng H, Cox NJ, Katz JM, Sasisekharan R, Tumpey TM (2011) Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS One 6:e25091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belser JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Pappas C, Sun X, Carney PJ, Villanueva JM, Stevens J, Katz JM, Tumpey TM (2013) Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 501:556–559

    Article  CAS  PubMed  Google Scholar 

  5. Bottcher-Friebertshauser E, Garten W, Matrosovich M, Klenk HD (2014) The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 385:3–34

    PubMed  Google Scholar 

  6. Bui C, Bethmont A, Chughtai AA, Gardner L, Sarkar S, Hassan S, Seale H, MacIntyre CR (2016) A systematic review of the comparative epidemiology of avian and human influenza A H5N1 and H7N9—lessons and unanswered questions. Transbound Emerg Dis 63:602–620

    Article  CAS  PubMed  Google Scholar 

  7. Byrd-Leotis L, Galloway SE, Agbogu E, Steinhauer DA (2015) Influenza hemagglutinin (HA) stem region mutations that stabilize or destabilize the structure of multiple HA subtypes. J Virol 89:4504–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Q, Yu Z, Sun W, Li X, Chai H, Gao X, Guo J, Zhang K, Feng N, Zheng X, Wang H, Zhao Y, Qin C, Huang G, Yang S, Qian J, Gao Y, Xia X, Wang T, Hua Y (2015) Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice. Vet Microbiol 177:18–24

    Article  CAS  PubMed  Google Scholar 

  9. Chen Q, Wang H, Zhao L, Ma L, Wang R, Lei Y, Li Y, Yang G, Chen J, Chen G, Li L, Jin T, Li J, Liu X, Xu X, Wong G, Liu L, Liu Y, Shi W, Bi Y, Gao GF (2016) First documented case of avian influenza (H5N1) virus infection in a lion. Emerg Microbes Infect 5:e125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng K, Yu Z, Chai H, Sun W, Xin Y, Zhang Q, Huang J, Zhang K, Li X, Yang S, Wang T, Zheng X, Wang H, Qin C, Qian J, Chen H, Hua Y, Gao Y, Xia X (2014) PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology 468–470:207–213

    Article  PubMed  Google Scholar 

  11. Choi WS, Baek YH, Kwon JJ, Jeong JH, Park SJ, Kim YI, Yoon SW, Hwang J, Kim MH, Kim CJ, Webby RJ, Choi YK, Song MS (2017) Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse. Sci Rep 7:40667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, Schrauwen EJ, Bestebroer TM, Koel B, Burke DF, Sutherland-Cash KH, Whittleston CS, Russell CA, Wales DJ, Smith DJ, Jonges M, Meijer A, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Garcia-Sastre A, Perez DR, Fouchier RA (2010) Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol 84:11802–11813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DuBois RM, Zaraket H, Reddivari M, Heath RJ, White SW, Russell CJ (2011) Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity. PLoS Pathog 7:e1002398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabriel G, Fodor E (2014) Molecular determinants of pathogenicity in the polymerase complex. Curr Top Microbiol Immunol 385:35–60

    PubMed  Google Scholar 

  15. Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H (2009) Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5:e1000709

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gu M, Liu W, Cao Y, Peng D, Wang X, Wan H, Zhao G, Xu Q, Zhang W, Song Q, Li Y, Liu X (2011) Novel reassortant highly pathogenic avian influenza (H5N5) viruses in domestic ducks, China. Emerg Infect Dis 17:1060–1063

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hanson A, Imai M, Hatta M, McBride R, Imai H, Taft A, Zhong G, Watanabe T, Suzuki Y, Neumann G, Paulson JC, Kawaoka Y (2015) Identification of stabilizing mutations in an H5 hemagglutinin influenza virus protein. J Virol 90:2981–2992

    Article  PubMed  Google Scholar 

  18. Harder TC, Vahlenkamp TW (2010) Influenza virus infections in dogs and cats. Vet Immunol Immunopathol 134:54–60

    Article  CAS  PubMed  Google Scholar 

  19. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842

    Article  CAS  PubMed  Google Scholar 

  20. He J, Duan J (2015) First human case of avian influenza A (H5N6) in Yunnan province, China. SAGE Open Med Case Rep 3:2050313X15596484

    PubMed  PubMed Central  Google Scholar 

  21. Henaux V, Samuel MD, Dusek RJ, Fleskes JP, Ip HS (2012) Presence of avian influenza viruses in waterfowl and wetlands during summer 2010 in California: are resident birds a potential reservoir? PLoS One 7:e31471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ilyushina NA, Khalenkov AM, Seiler JP, Forrest HL, Bovin NV, Marjuki H, Barman S, Webster RG, Webby RJ (2010) Adaptation of pandemic H1N1 influenza viruses in mice. J Virol 84:8607–8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiao P, Cui J, Song Y, Song H, Zhao Z, Wu S, Qu N, Wang N, Ouyang G, Liao M (2016) New reassortant H5N6 highly pathogenic avian influenza viruses in Southern China, 2014. Front Microbiol 7:754

    PubMed  PubMed Central  Google Scholar 

  26. Lang G, Gagnon A, Geraci JR (1981) Isolation of an influenza A virus from seals. Arch Virol 68:189–195

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Wang X, Sun Z, Hu J, Gao Z, Hao X, Li J, Liu H, Wang X, Gu M, Xu X, Liu X, Liu X (2015) Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza virus in mice. Virus Res 210:255–263

    Article  CAS  PubMed  Google Scholar 

  28. Lin HT, Wang CH, Chueh LL, Su BL, Wang LC (2015) Influenza A(H6N1) virus in dogs, Taiwan. Emerg Infect Dis 21:2154–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mei K, Liu G, Chen Z, Gao Z, Zhao L, Jin T, Yu X, Chen Q (2016) Deep sequencing reveals the viral adaptation process of environment-derived H10N8 in mice. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 37:8–13

    CAS  Google Scholar 

  30. Min JY, Santos C, Fitch A, Twaddle A, Toyoda Y, DePasse JV, Ghedin E, Subbarao K (2013) Mammalian adaptation in the PB2 gene of avian H5N1 influenza virus. J Virol 87:10884–10888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishiura H, Hoye B, Klaassen M, Bauer S, Heesterbeek H (2009) How to find natural reservoir hosts from endemic prevalence in a multi-host population: a case study of influenza in waterfowl. Epidemics 1:118–128

    Article  PubMed  Google Scholar 

  32. Pan M, Gao R, Lv Q, Huang S, Zhou Z, Yang L, Li X, Zhao X, Zou X, Tong W, Mao S, Zou S, Bo H, Zhu X, Liu L, Yuan H, Zhang M, Wang D, Li Z, Zhao W, Ma M, Li Y, Li T, Yang H, Xu J, Zhou L, Zhou X, Tang W, Song Y, Chen T, Bai T, Zhou J, Wang D, Wu G, Li D, Feng Z, Gao GF, Wang Y, He S, Shu Y (2016) Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings. J Infect 72:52–59

    Article  PubMed  Google Scholar 

  33. Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, Brown EG (2010) PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus. J Virol 84:10606–10618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg (Lond) 27:493–497

    Google Scholar 

  35. Sang X, Wang A, Chai T, He X, Ding J, Gao X, Li Y, Zhang K, Ren Z, Li L, Yu Z, Wang T, Feng N, Zheng X, Wang H, Zhao Y, Yang S, Gao Y, Xia X (2015) Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice. Arch Virol 160:1267–1277

    Article  CAS  PubMed  Google Scholar 

  36. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK (2009) The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 83:12325–12335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Songserm T, Amonsin A, Jam-on R, Sae-Heng N, Pariyothorn N, Payungporn S, Theamboonlers A, Chutinimitkul S, Thanawongnuwech R, Poovorawan Y (2006) Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis 12:1744–1747

    Article  PubMed  PubMed Central  Google Scholar 

  38. Takayama I, Hieu NT, Shirakura M, Nakauchi M, Fujisaki S, Takahashi H, Nagata S, Long NT, Odagiri T, Tashiro M, Kageyama T (2016) Novel reassortant avian influenza A(H5N1) virus in human, Southern Vietnam, 2014. Emerg Infect Dis 22:557–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan L, Su S, Smith DK, He S, Zheng Y, Shao Z, Ma J, Zhu H, Zhang G (2014) A combination of HA and PA mutations enhances virulence in a mouse-adapted H6N6 influenza A virus. J Virol 88:14116–14125

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thanawongnuwech R, Amonsin A, Tantilertcharoen R, Damrongwatanapokin S, Theamboonlers A, Payungporn S, Nanthapornphiphat K, Ratanamungklanon S, Tunak E, Songserm T, Vivatthanavanich V, Lekdumrongsak T, Kesdangsakonwut S, Tunhikorn S, Poovorawan Y (2005) Probable tiger-to-tiger transmission of avian influenza H5N1. Emerg Infect Dis 11:699–701

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tumpey TM, Suarez DL, Perkins LE, Senne DA, Lee JG, Lee YJ, Mo IP, Sung HW, Swayne DE (2002) Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat. J Virol 76:6344–6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu H, Peng X, Peng X, Wu N (2016) Amino acid substitutions involved in the adaptation of a novel highly pathogenic H5N2 avian influenza virus in mice. Virol J 13:159

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiong X, Coombs PJ, Martin SR, Liu J, Xiao H, McCauley JW, Locher K, Walker PA, Collins PJ, Kawaoka Y, Skehel JJ, Gamblin SJ (2013) Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497:392–396

    Article  CAS  PubMed  Google Scholar 

  44. Xu X, Subbarao Cox NJ, Guo Y (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi E, Sashika M, Fujii K, Kobayashi K, Bui VN, Ogawa H, Imai K (2014) Prevalence of multiple subtypes of influenza A virus in Japanese wild raccoons. Virus Res 189:8–13

    Article  CAS  PubMed  Google Scholar 

  46. Yan Y, Gu JY, Yuan ZC, Chen XY, Li ZK, Lei J, Hu BL, Yan LP, Xing G, Liao M, Zhou JY (2017) Genetic characterization of H9N2 avian influenza virus in plateau pikas in the Qinghai Lake region of China. Arch Virol 162:1025–1029

    Article  CAS  PubMed  Google Scholar 

  47. Yang ZF, Mok CK, Peiris JS, Zhong NS (2015) Human infection with a novel avian influenza A(H5N6) virus. N Engl J Med 373:487–489

    Article  CAS  PubMed  Google Scholar 

  48. Yu Z, Cheng K, Sun W, Xin Y, Cai J, Ma R, Zhao Q, Li L, Huang J, Sang X, Li X, Zhang K, Wang T, Qin C, Qian J, Gao Y, Xia X (2014) Lowly pathogenic avian influenza (H9N2) infection in Plateau pika (Ochotona curzoniae), Qinghai Lake, China. Vet Microbiol 173:132–135

    Article  PubMed  Google Scholar 

  49. Yu Z, Cheng K, Sun W, Zhang X, Li Y, Wang T, Wang H, Zhang Q, Xin Y, Xue L, Zhang K, Huang J, Yang S, Qin C, Wilker PR, Yue D, Chen H, Gao Y, Xia X (2015) A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology 486:180–186

    Article  CAS  PubMed  Google Scholar 

  50. Yu Z, Gao X, Wang T, Li Y, Li Y, Xu Y, Chu D, Sun H, Wu C, Li S, Wang H, Li Y, Xia Z, Lin W, Qian J, Chen H, Xia X, Gao Y (2015) Fatal H5N6 avian influenza virus infection in a domestic cat and wild birds in China. Sci Rep 5:10704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu Z, Sun W, Li X, Chen Q, Chai H, Gao X, Guo J, Zhang K, Wang T, Feng N, Zheng X, Wang H, Zhao Y, Qin C, Huang G, Yang S, Hua Y, Zhang X, Gao Y, Xia X (2015) Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice. Virology 476:233–239

    Article  CAS  PubMed  Google Scholar 

  52. Zhang C, Xuan Y, Shan H, Yang H, Wang J, Wang K, Li G, Qiao J (2015) Avian influenza virus H9N2 infections in farmed minks. Virol J 12:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y, Deng G, Shi J, Tian G, Liu L, Liu J, Guan Y, Bu Z, Chen H (2013) H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340:1459–1463

    Article  CAS  PubMed  Google Scholar 

  54. Zhao G, Gu X, Lu X, Pan J, Duan Z, Zhao K, Gu M, Liu Q, He L, Chen J, Ge S, Wang Y, Chen S, Wang X, Peng D, Wan H, Liu X (2012) Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China. PLoS One 7:e46183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao K, Gu M, Zhong L, Duan Z, Zhang Y, Zhu Y, Zhao G, Zhao M, Chen Z, Hu S, Liu W, Liu X, Peng D, Liu X (2013) Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet Microbiol 163:351–357

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Yu Z, Liu L, Wang T, Sun W, Wang C, Xia Z, Gao Y, Zhou B, Qian J, Xia X (2016) Adaptive amino acid substitutions enhance the virulence of a novel human H7N9 influenza virus in mice. Vet Microbiol 187:8–14

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Yu, Xianzhu Xia or Yuwei Gao.

Ethics declarations

Funding

This study was funded by the National Key Technology R & D Program (2013BAD12B04), National Key Research and Development Plan (2016YFD0500203), National Key Research and Development Plan (2017YFD0500100), and the High-Level Talents and Innovative Team Recruitment Program of the Shandong Academy of Agricultural Sciences.

Conflict of interest

All authors have read the manuscript and declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study does not contain any studies with human participants. The animal studies were conducted within a biosecurity level 3 laboratory approved by the Military Veterinary Research Institute of the Academy of Military Medical Sciences. The protocols for animal studies were approved by the Review Board of Military Veterinary Research Institute of the Academy of Military Medical Sciences.

Additional information

Handling Editor: Ayato Takada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Cheng, K., Sun, W. et al. PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice. Arch Virol 163, 401–410 (2018). https://doi.org/10.1007/s00705-017-3631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3631-7

Navigation