Archives of Virology

, Volume 163, Issue 1, pp 105–114 | Cite as

Molecular analysis of the low-temperature Escherichia coli phage vB_EcoS_NBD2

  • Laura KalinieneEmail author
  • Lidija Truncaitė
  • Eugenijus Šimoliūnas
  • Aurelija Zajančkauskaitė
  • Monika Vilkaitytė
  • Algirdas Kaupinis
  • Martynas Skapas
  • Rolandas Meškys
Original Article


A novel low-temperature Escherichia coli phage vB_EcoS_NBD2 was isolated in Lithuania from agricultural soil. With an optimum temperature for plating around 20 °C, vB_EcoS_NBD2 efficiently produced plaques on Escherichia coli NovaBlue (DE3) at a temperature range of 10–30 °C, yet failed to plate at temperatures above 35 °C. Phage vB_EcoS_NBD2 virions have a siphoviral morphology with an isometric head (65 nm in diameter), and a non-contractile flexible tail (170 nm). The 51,802-bp genome of vB_EcoS_NBD2 has a G + C content of 49.8%, and contains 87 probable protein-encoding genes as well as 1 gene for tRNASer. Comparative sequence analysis revealed that 22 vB_EcoS_NBD2 ORFs encode unique proteins that have no reliable identity to database entries. Based on homology to biologically defined proteins and/or proteomics analysis, 36 vB_EcoS_NBD2 ORFs were given a putative functional annotation, including 20 genes coding for morphogenesis-related proteins and 13 associated with DNA metabolism. Phylogenetic analysis revealed that vB_EcoS_NBD2 belongs to the subfamily Tunavirinae, but cannot be assigned to any genus currently recognized by ICTV.



This work was supported by the Research Council of Lithuania (Project No. SIT-7/2015).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2017_3589_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3910 kb)


  1. 1.
    Salmond GP, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13:777–786CrossRefPubMedGoogle Scholar
  2. 2.
    Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Keen EC (2015) A century of phage research: Bacteriophages and the shaping of modern biology. Bioessays 37:6–9CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Klumpp J, Fouts DE, Sozhamannan S (2013) Bacteriophage functional genomics and its role in bacterial pathogen detection. Brief Funct Genomics 12:354–365CrossRefPubMedGoogle Scholar
  5. 5.
    Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A et al (2016) Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep 6:34338CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hatfull GF (2015) Dark matter of the biosphere: the amazing world of bacteriophage diversity. Goodrum F, ed. J Virol 89:8107–8110CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146:843–857CrossRefPubMedGoogle Scholar
  8. 8.
    Kutter E, Sulakvelidze A (2004) Bacteriophages: biology and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  9. 9.
    Seeley ND, Primrose SB (1980) The effect of temperature on the ecology of aquatic bacteriophages. J Gen Virol 46:87–95CrossRefGoogle Scholar
  10. 10.
    Klausa V, Piešinienė L, Staniulis J, Nivinskas R (2003) Abundance of T4-type bacteriophages in municipal wastewater and sewage. Ekologija 1:47–50Google Scholar
  11. 11.
    Leclerc H, Mossel DAA, Edberg SC, Struijk CB (2001) Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55:201–234CrossRefPubMedGoogle Scholar
  12. 12.
    Yanagida M, Suzuki Y, Toda T (1984) Molecular organization of the head of bacteriophage T-even: underlying design principles. Adv Biophys 17:97–146CrossRefPubMedGoogle Scholar
  13. 13.
    Wegrzyn G, Wegrzyn A (2005) Genetic switches during bacteriophage lambda development. Prog Nucleic Acid Res Mol Biol 79:1–48CrossRefPubMedGoogle Scholar
  14. 14.
    Kaliniene L, Zajančkauskaitė A, Šimoliūnas E, Truncaitė L, Meškys R (2015) Low-temperature bacterial viruses VR—a small but diverse group of E. coli phages. Arch Virol 160:1367–1370CrossRefPubMedGoogle Scholar
  15. 15.
    Šimoliūnas E, Kaliniene L, Stasilo M, Truncaitė L, Zajančkauskaitė A et al (2014) Isolation and characterization of vB_ArS-ArV2—first Arthrobacter sp. infecting bacteriophage with completely sequenced genome. PLoS One 9:e111230CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carlson K, Miller E (1994) Experiments in T4 genetics. In: Karam JD (ed) Bacteriophage T4. ASM Press, Washington DC, pp 419–483Google Scholar
  17. 17.
    Alva V, Nam SZ, Söding J, Lupas AN (2016) The MPI bioinformatics toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. doi: 10.1093/nar/gkw348 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(suppl 2):W244–W248CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(suppl 2):W273–W279CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lopes A, Tavares P, Petit MA, Guérois R, Zinn-Justin S (2014) Automated identification of tailed bacteriophages and classification according to their neck organization. BMC Genomics 15:1027CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Selick HE, Kreuzer KN, Alberts BM (1988) The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem 263:11336–11347PubMedGoogle Scholar
  23. 23.
    Grenier F, Matteau D, Baby V, Rodrigue S (2014) Complete genome sequence of Escherichia coli BW25113. Genome Announc 2:e01038-14CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMedGoogle Scholar
  25. 25.
    Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF (2012) Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol 13:R37CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Han MJ, Lee SY, Hong SH (2012) Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains. J Microbiol Biotechnol 22:470–478CrossRefPubMedGoogle Scholar
  27. 27.
    Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Müller-Loennies S, Lindner B, Brade H (2003) Structural analysis of oligosaccharides from lipopolysaccharide (LPS) of Escherichia coli K12 strain W3100 reveals a link between inner and outer core LPS biosynthesis. J Biol Chem 278:34090–34101CrossRefPubMedGoogle Scholar
  29. 29.
    Jansson PE, Lindberg AA, Lindberg B, Wollin R (1981) Structural studies on the hexose region of the core in lipopolysaccharides from Enterobacteriaceae. Eur J Biochem 115:571–577CrossRefPubMedGoogle Scholar
  30. 30.
    Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363(4):fnw002CrossRefPubMedGoogle Scholar
  31. 31.
    Iyer LM, Koonin EV, Aravind L (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3:8CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Warren RA (1980) Modified bases in bacteriophage DNAs. Annu Rev Microbiol 34:137–158CrossRefPubMedGoogle Scholar
  33. 33.
    Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52:243–258CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rajaure M, Berry J, Kongari R, Cahill J, Young R (2015) Membrane fusion during phage lysis. Proc Natl Acad Sci USA 112:5497–5502CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681CrossRefPubMedGoogle Scholar
  36. 36.
    Rao VB, Feiss M (2015) Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu Rev Virol 2:351–378CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wietzorrek A, Schwarz H, Herrmann C, Braun V (2006) The genome of the novel phage Rtp, with a rosette-like tail tip, is homologous to the genome of phage T1. J Bacteriol 188:1419–1436CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stirm S, Bessler W, Fehmel F, Freund-Mölbert E (1971) Bacteriophage particles with endo-glycosidase activity. J Virol 8:343–346PubMedPubMedCentralGoogle Scholar
  40. 40.
    Stummeyer K, Dickmanns A, Mühlenhoff M, Gerardy-Schahn R, Ficner R (2005) Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat Struct Mol Biol 12:90–96CrossRefPubMedGoogle Scholar
  41. 41.
    Niu YD, McAllister TA, Nash JH, Kropinski AM, Stanford K (2014) Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS One 9(6):e100426CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sharma M (2013) Lytic bacteriophages: potential interventions against enteric bacterial pathogens on produce. Bacteriophage 3:e25518CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR et al (2013) Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg Infect Dis 19:407–415CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ongeng D, Geeraerd AH, Springael D, Ryckeboer J, Muyanja C et al (2015) Fate of Escherichia coli O157:H7 and Salmonella enterica in the manure-amended soil-plant ecosystem of fresh vegetable crops: a review. Crit Rev Microbiol 41:273–294CrossRefPubMedGoogle Scholar
  45. 45.
    Pérez Pulido R, Grande Burgos MJ, Gálvez A, Lucas López R (2016) Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Crit Rev Biotechnol 36:851–861PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Laura Kaliniene
    • 1
    Email author
  • Lidija Truncaitė
    • 1
  • Eugenijus Šimoliūnas
    • 1
  • Aurelija Zajančkauskaitė
    • 1
  • Monika Vilkaitytė
    • 1
  • Algirdas Kaupinis
    • 2
  • Martynas Skapas
    • 3
  • Rolandas Meškys
    • 1
  1. 1.Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences CenterVilnius UniversityVilniusLithuania
  2. 2.Proteomics Center, Institute of Biochemistry, Life Sciences CenterVilnius UniversityVilniusLithuania
  3. 3.Centre for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations