Skip to main content
Log in

CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Pseudorabies virus (PRV) is a swine herpesvirus that causes significant morbidity and mortality in swine populations and has caused huge economic losses in the worldwide swine industry. Currently, there is no effective antiviral drug in clinical use for PRV infection; it is also difficult to eliminate PRV from infected swine. In our study, we set out to combat these swine herpesvirus infections by exploiting the CRISPR/Cas9 system. We designed 75 single guide RNAs (sgRNA) by targeting both essential and non-essential genes across the genome of PRV. We applied a firefly luciferase-tagged reporter PRV virus for high-throughput sgRNA screening and found that most of the sgRNAs significantly inhibited PRV replication. More importantly, using a transfection assay, we demonstrated that simultaneous targeting of PRV with multiple sgRNAs completely abolished the production of infectious viruses in cells. These data suggest that CRISPR/Cas9 could be a novel therapeutic agent against PRV in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. An TQ, Peng JM, Tian ZJ, Zhao HY, Li N, Liu YM, Chen JZ, Leng CL, Sun Y, Chang D, Tong GZ (2013) Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerg Infect Dis 19:1749–1755

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bi Y, Sun L, Gao D, Ding C, Li Z, Li Y, Cun W, Li Q (2014) High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog 10:e1004090

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15

    Article  CAS  PubMed  Google Scholar 

  5. Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guo JC, Tang YD, Zhao K, Wang TY, Liu JT, Gao JC, Chang XB, Cui HY, Tian ZJ, Cai XH, An TQ (2016) Highly efficient CRISPR/Cas9-mediated homologous recombination promotes the rapid generation of bacterial artificial chromosomes of pseudorabies virus. Front Microbiol 7:2110

    PubMed  PubMed Central  Google Scholar 

  7. He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44:e85

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 111:11461–11466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6:22555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR (2014) Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88:11965–11972

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR (2015) Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476:196–205

    Article  CAS  PubMed  Google Scholar 

  12. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo Y, Li N, Cong X, Wang CH, Du M, Li L, Zhao B, Yuan J, Liu DD, Li S, Li Y, Sun Y, Qiu HJ (2014) Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Vet Microbiol 174:107–115

    Article  CAS  PubMed  Google Scholar 

  14. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7:1765–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mettenleiter TC (1991) Molecular biology of pseudorabies (Aujeszky’s disease) virus. Comp Immunol Microbiol Infect Dis 14:151–163

    Article  CAS  PubMed  Google Scholar 

  16. Peng Z, Ouyang T, Pang D, Ma T, Chen X, Guo N, Chen F, Yuan L, Ouyang H, Ren L (2016) Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Res 223:197–205

    Article  CAS  PubMed  Google Scholar 

  17. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 112:6164–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, Khalili K (2016) Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 6:23146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soppe JA, Lebbink RJ (2017) Antiviral goes viral: harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol. doi:10.1016/j.tim.2017.04.005

    PubMed  Google Scholar 

  20. Tang YD, Liu JT, Fang QQ, Wang TY, Sun MX, An TQ, Tian ZJ, Cai XH (2016) Recombinant pseudorabies virus (PRV) expressing firefly luciferase effectively screened for CRISPR/Cas9 single guide RNAs and antiviral compounds. Viruses 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tang YD, Liu JT, Wang TY, An TQ, Sun MX, Wang SJ, Fang QQ, Hou LL, Tian ZJ, Cai XH (2016) Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system. Virus Res 225:33–39

    Article  CAS  PubMed  Google Scholar 

  22. Tong W, Liu F, Zheng H, Liang C, Zhou YJ, Jiang YF, Shan TL, Gao F, Li GX, Tong GZ (2015) Emergence of a Pseudorabies virus variant with increased virulence to piglets. Vet Microbiol 181:236–240

    Article  PubMed  Google Scholar 

  23. van Diemen FR, Kruse EM, Hooykaas MJ, Bruggeling CE, Schurch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJ, Lebbink RJ (2016) CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog 12:e1005701

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang G, Zhao N, Berkhout B, Das AT (2016) CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther 24:522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Quake SR (2014) RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA 111:13157–13162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg MA, Liang C (2016) CRISPR/Cas9-Derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15:481–489

    Article  CAS  PubMed  Google Scholar 

  27. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  28. Ye C, Zhang QZ, Tian ZJ, Zheng H, Zhao K, Liu F, Guo JC, Tong W, Jiang CG, Wang SJ, Shi M, Chang XB, Jiang YF, Peng JM, Zhou YJ, Tang YD, Sun MX, Cai XH, An TQ, Tong GZ (2015) Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: evidence for the existence of two major genotypes. Virology 483:32–43

    Article  CAS  PubMed  Google Scholar 

  29. Yu X, Zhou Z, Hu D, Zhang Q, Han T, Li X, Gu X, Yuan L, Zhang S, Wang B, Qu P, Liu J, Zhai X, Tian K (2014) Pathogenic pseudorabies virus, China, 2012. Emerg Infect Dis 20:102–104

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Program on Key Research Project (2016YFD0500100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hui Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Günther Keil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YD., Liu, JT., Wang, TY. et al. CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication. Arch Virol 162, 3881–3886 (2017). https://doi.org/10.1007/s00705-017-3553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3553-4

Keywords

Navigation