Skip to main content

Advertisement

Log in

Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rabies is an infectious viral disease that is practically always fatal following the onset of clinical signs. In Mexico, the last case of human rabies transmitted by dogs was reported in 2006 and canine rabies has declined significantly due to vaccination campaigns implemented in the country. Here we report on the molecular characterization of six rabies virus strains found in Yucatan and Chiapas, remarkably, four of them showed an atypical reaction pattern when antigenic characterization with a reduced panel of eight monoclonal antibodies was performed. Phylogenetic analyses on the RNA sequences unveiled that the three atypical strains from Yucatan are associated with skunks. Analysis using the virus entire genome showed that they belong to a different lineage distinct from the variants described for this animal species in Mexico. The Chiapas atypical strain was grouped in a lineage that was considered extinct, while the others are clustered within classic dog variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aréchiga-Ceballos N, Karunaratna D, Aguilar-Setién A (2014) Control of canine rabies in developing countries: key features and animal welfare implications. Rev Sci Tech Off Int Epiz 33:311–321

    Article  Google Scholar 

  2. Aréchiga-Ceballos N, Velasco-Villa A, Shi M, Flores-Chávez S, Barrón B, Cuevas-Domínguez E, González-Origel A, Aguilar-Setién A (2010) New rabies virus variant found during an epizootic in white-nosed coatis from the Yucatan Peninsula. Epidemiol Infect 138:1586–1589

    Article  PubMed  Google Scholar 

  3. Badrane H, Tordo N (2001) Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 75:8096–8104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blanton JD, Palmer D, Rupprecht CE (2010) Rabies surveillance in the United States during 2009. J Am Vet Med Assoc 237:646–657

    Article  PubMed  Google Scholar 

  5. Bourhy H, Kissi B, Tordo N (1993) Molecular diversity of the Lyssavirus genus. Virology 194:70–81. doi:10.1006/viro.1993.1236

    Article  CAS  PubMed  Google Scholar 

  6. Carrada-Bravo T (1978) Investigación documental de la primera endemia de la rabia registrada en la república mexicana en 1709. Sal Pub Mex 20:705–716

    CAS  Google Scholar 

  7. Conzelmann KK, Cox JH, Schneider LG, Thiel HJ (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499

    Article  CAS  PubMed  Google Scholar 

  8. Davis PL, Bourhy H, Holmes EC (2006) The evolutionary history and dynamics of bat rabies virus. Infect Genet Evol 6:464–473

    Article  CAS  PubMed  Google Scholar 

  9. Diaz AM, Papo S, Rodríguez A, Smith JS (1994) Antigenic analysis of rabies-virus samples from Latin America and the Caribbean. J Vet Med Ser B 41:153–160

    Article  CAS  Google Scholar 

  10. Dietzgen RG, Calisher CH, Kurath G, Kuzmin IV, Rodriguez LL, Stone DM, Tesh RB, Tordo N, Walker PJ, Wetzel T et al (2011) Family Rhabdoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy. Ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego, pp 686–714

    Google Scholar 

  11. Dubose RT (1978) Rabies. In: Hofstad MS, Calnek BW, Helmboldt CF, Reid WM, Yoder Jr HW (eds) Diseases of poultry, 7th edn. Iowa State University Press/Ames, Iowa, pp 662–664

    Google Scholar 

  12. Escobar LE, Restif O, Yung V, Favi M, Pons DJ, Medina-Vogel G (2015) Spatial and temporal trends of bat-borne rabies in Chile. Epidemiol Infect 143:1486–1494

    Article  CAS  PubMed  Google Scholar 

  13. Faber M, Pulmanausahkul R, Hodawadekar S, Spitsin S, Mcgettigan J, Schnell M, Dietzschold B (2002) Over expression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J Virol 76:3374–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6: Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  15. Franka R, Smith TG, Dyer JL, Wu X, Niezgoda M, Rupprecht CE (2013) Current and future tools for global canine rabies elimination. Antivir Res 100(1):220–225. doi:10.1016/j.antiviral.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  16. Goto H, Minamoto N, Ito H, Ito N, Sugiyama M, Kinjo T, Kawai A (2000) Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. J Gen Virol 81:119–127

    Article  CAS  PubMed  Google Scholar 

  17. Hughes GJ, Orciari LA, Rupprecht CE (2005) Evolutionary timescale of rabies virus adaptation to North American bats inferred from the substitution rate of the nucleoprotein gene. J Gen Virol 86:1467–1474

    Article  CAS  PubMed  Google Scholar 

  18. Ito Y, Ito N, Saito S, Masatani T, Nakagawa K, Atoji Y, Sugiyama M (2010) Amino acid substitutions at positions 242, 255 and 268 in rabies virus glycoprotein affect spread of viral infection. Microbiol Immunol 54:89–97

    Article  CAS  PubMed  Google Scholar 

  19. Kissi B, Tordo N, Bourhy H (1995) Genetic polymorphism in the rabies virus nucleoprotein gene. Virology 209:526–537. doi:10.1006/viro.1995.1285

    Article  CAS  PubMed  Google Scholar 

  20. Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, Streicker DG, Bergman DL, Rupprecht CE (2012) Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathog 8(6):e1002786. doi:10.1371/journal.ppat.1002786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai CY, Dietzschold B (1981) Amino acid composition and terminal sequence analysis of the rabies virus glycoprotein: identification of the reading frame on the cDNA sequence. Biochem Biophys Res Commun 103:536–542

    Article  CAS  PubMed  Google Scholar 

  22. Lentz TL, Wilson PT, Hawrot E, Speicher DW (1984) Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science 226:847–848

    Article  CAS  PubMed  Google Scholar 

  23. Mendoza A, Ceballos G (2014) Family Mephitidae. In: Ceballos G (ed) Mammals of Mexico. Johns Hopkins University Press, Baltimore, pp 551–560

    Google Scholar 

  24. Minamoto N, Tanaka H, Hishida M, Goto H, Ito H, Naruse S, Yamamoto K, Sugiyama M, Kinjo T, Mannen K, Mifune K (1994) Linear and conformation-dependent antigenic sites on the nucleoprotein of rabies virus. Microbiol Immunol 38:449–455

    Article  CAS  PubMed  Google Scholar 

  25. Morales-Martínez ME, Rico-Rosillo G, Gómez-Olivares JL, Aguilar-Setién A (2006) Immunologic importance of the N protein in the rabies virus infection. Vet Méx 37(3):351–367

    Google Scholar 

  26. Morimoto K, Ohkubo A, Kawai A (1989) Structure and transcription of the glycoprotein gene of attenuated HEP-Flury strain of rabies virus. Virology 173:465–477

    Article  CAS  PubMed  Google Scholar 

  27. Muñoz-Ramírez ZY, Mendez-Tenorio A, Kato I, Bravo MM, Rizzato C, Thorell K, Torres R, Aviles-Jimenez F, Camorlinga M, Canzian F, Torres J (2017) Whole genome sequence and phylogenetic analysis show Helicobacter pylori strains from Latin America have followed a unique evolution pathway. Front Cell Infect Microbiol 7:50. doi:10.3389/fcimb.2017.00050

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nadin-Davis SA, Loza-Rubio E (2006) The molecular epidemiology of rabies associated with chiropteran hosts in Mexico. Virus Res 117:215–226

    Article  CAS  PubMed  Google Scholar 

  29. Pérez-Agüeros SI, Ortiz-Alcántara J, Garcés-Ayala F, Mendieta-Condado E, González-Durán E, Aréchiga Ceballos N, Melo-Munguía M, Chávez-López S, Sandoval-Borja A, Gómez-Sierra M, Terán-Toledo R, Martínez-Solís D, Animas-Vargas I, Escamilla-Ríos B, Torres-Longoria B, López Martínez I, Hernández-Rivas L, Díaz-Quiñonez JA, Ramírez-González JE (2013) Genome of a rabies virus isolated from a dog in Chiapas Mexico. Genome Announc (in press)

  30. Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramírez-Pulido J, Arroyo-Cabrales J, Castro-Campillo A (2005) Estado actual y relación nomenclatural de los mamíferos terrestres de México. Acta Zool Mex (n.s.) 21(1):21–82

    Google Scholar 

  32. Rupprecht CE, Glickman LT, Spencer PA, Wiktor TJ (1987) Epidemiology of rabies virus variants. Differentiation using monoclonal antibodies and discriminant analysis. Am J Epidemiol 126:298–309

    Article  CAS  PubMed  Google Scholar 

  33. Schuarte LH (1959) Rabies in fowl. In: Biester HE, Schuarte LH (eds) Diseases of poultry, 4th edn. Iowa State University Press, Ames, pp 616–617

    Google Scholar 

  34. Secretaría de Salud CENAPRECE (2015) Guía para la atención médica y antirrábica de la persona expuesta al virus de la rabia. Secretaría de Salud, Mexico, DF

    Google Scholar 

  35. Smith JS, Orciari LA, Yager PA, Seidel HD, Warner CK (1992) Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. J Infect Dis 166:296–307

    Article  CAS  PubMed  Google Scholar 

  36. Smith JS, Orciari LA, Yager PA (1995) Molecular epidemiology of rabies in the United States. Semin Virol 6:387–400

    Article  Google Scholar 

  37. Takayama-Ito M, Inoue K, Shoji Y, Inoue S, Iijima T, Sakai T, Kurane I, Morimoto K (2006) A highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoprotein. Virus Res 119:208–215

    Article  CAS  PubMed  Google Scholar 

  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tao XY, Tang Q, Li H, Mo ZJ, Zhang H, Wang DM, Zhang Q, Song M, Velasco-Villa A, Wu X, Rupprecht CE, Liang GD (2009) Molecular epidemiology of rabies in southern People’s Republic of China. Emerg Infect Dis 15:1192–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tcherepanov T, Ehlers A, Upton C (2006) Genome annotation transfer utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genom 7:150

    Article  Google Scholar 

  41. Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1988) Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerases) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576

    Article  CAS  PubMed  Google Scholar 

  42. Velasco A, Gómez M, Hernández G, Juárez V, Meléndez A, Vargas F, Velázquez O, Flisser A (2002) Antigenic diversity and distribution of rabies virus in Mexico. J Clin Microbiol 40:951–958

    Article  Google Scholar 

  43. Velasco A, Orciari LA, Souza V, Juárez V, Gómez M, Castillo A, Flisser A, Rupprecht CE (2005) Molecular epizootiology of rabies associated with terrestrial carnivores in Mexico. Virus Res 111:13–27

    Article  Google Scholar 

  44. Velasco A, Messenger SL, Orciari LA, Niezgoda M, Blanton JD, Fukagawa C, Rupprecht CE (2008) New rabies virus variant in Mexican immigrant. Emerg Infect Dis 12:1906–1908

    Article  Google Scholar 

  45. Velasco-Villa A, Mauldin MR, Shi M, Escobar LE, Gallardo-Romero NF, Damon I, Olson VA, Streicker DG, Emerson G (2017) The history of rabies in the Western Hemisphere. Antivir Res. doi:https://doi.org/10.1016/j.antiviral.2017.03.013. Accessed 29 Mar 2017 (ISSN 0166-3542)

  46. Velasco-Villa A, Reeder SA, Orciari LA, Yager PA, Franka R, Blanton JD, Zuckero L, Hunt P, Oertli EH, Robinson LE, Rupprecht CE (2008) Enzootic rabies elimination from dogs and reemergence in wild terrestrial carnivores, United States. Emerg Infect Dis 14:1849–1854

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wiktor TJ, Flamand A, Koprowski K (1980) Use of monoclonal antibodies in diagnosis of rabies virus infection and differentiation of rabies and rabies-related viruses. J Virol Methods 1:33–46. doi:10.1016/0166-0934(80)90005-1

    Article  Google Scholar 

  48. Willoughby RE Jr, Tieves KS, Hoffman GM, Ghanayem NS, Amlie-Lefond CM, Schwabe MJ, Chusid MJ, Rupprecht CE (2005) Survival after treatment of rabies with induction of coma. N Engl J Med 352:2508–2514

    Article  CAS  PubMed  Google Scholar 

  49. Wilson DE, Reeder DM (2005) Mammal species of the World: a taxonomic and geographic reference, 3rd edn, vol 2. Johns Hopkins University Press, Baltimore

    Google Scholar 

  50. Wu X, Hu R, Zhang Y, Dong G, Rupprecht CE (2009) Reemerging rabies and lack of systemic surveillance in People’s Republic of China. Emerg Infect Dis 15:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang G, Fu ZF (2012) Complete genome sequence of a street rabies virus from Mexico. J Virol 86:10892–10893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Maribel González Villa for her encouragement and discussion of this paper and to the staff of Laboratorio de Rabia and Departamento de Biología Molecular for their technical assistance. We also thank the Public Health Laboratories of Chiapas. The findings and conclusions in this report are those of the authors and do not necessarily represent the official opinion of the Ministry of Health in Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ernesto Ramírez-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcés-Ayala, F., Aréchiga-Ceballos, N., Ortiz-Alcántara, J.M. et al. Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico. Arch Virol 162, 3629–3637 (2017). https://doi.org/10.1007/s00705-017-3529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3529-4

Navigation