Archives of Virology

, Volume 162, Issue 11, pp 3269–3282 | Cite as

HSP90: a promising broad-spectrum antiviral drug target

Review

Abstract

The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.

Notes

Acknowledgements

This research was supported by a research grant from the Natural Science Foundation of China 81573471, and Key Projects of Biological Industry Science and Technology of Guangzhou China (Grant number 201504291048224), and Science and Technology Plan Program of Guangdong Province China (Grant number 2015A050502028).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical statements

The work has not been published previously and is not under consideration for publication elsewhere. All authors have agreed to the submission and to the order of their names on the title page; this article does not contain any studies with animals or humans performed by any of the authors. All tables and figures are original from our work; the original sources were cited in the text.

References

  1. 1.
    Navarromarí JM, Mayoralcortés JM, Pérezruiz M, Rodríguezbaño J, Carratalá J, Gallardogarcía V (2010) Influenza a (H1N1) virus infection in humans: review to 30th October 2009. Enfermedades Infecciosas Y Microbiología Clínica 28(7):446–452CrossRefGoogle Scholar
  2. 2.
    Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk HD, Rappuoli R (2003) SARS—beginning to understand a new virus. Nat Rev Microbiol 1(3):209–218PubMedCrossRefGoogle Scholar
  3. 3.
    Chun TW, Moir S, Fauci AS (2015) HIV reservoirs as obstacles and opportunities for an HIV cure. Nat Immunol 16(6):584–589PubMedCrossRefGoogle Scholar
  4. 4.
    Krammer F, Palese P (2015) Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14(3):167–182PubMedCrossRefGoogle Scholar
  5. 5.
    Clercq ED, Herdewijn P (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1(1):13–25PubMedCrossRefGoogle Scholar
  6. 6.
    Organization WH (2016) Global report on early warning indicators of HIV drug resistance: technical reportGoogle Scholar
  7. 7.
    Piret J, Boivin G (2010) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55(2):459–472PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC (2011) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 152(4):367–379PubMedCrossRefGoogle Scholar
  9. 9.
    Fedson DS (2006) Pandemic influenza: a potential role for statins in treatment and prophylaxis. Clin Infect Dis Off Publ Infectious Dis Soc Am 43(2):199–205. doi: 10.1086/505116 CrossRefGoogle Scholar
  10. 10.
    Marjuki H, Alam MI, Ehrhardt C, Wagner R, Planz O, Klenk HD, Ludwig S, Pleschka S (2006) Membrane accumulation of influenza A virus hemagglutinin triggers nuclear export of the viral genome via protein kinase Calpha-mediated activation of ERK signaling. J Biol Chem 281(24):16707–16715. doi: 10.1074/jbc.M510233200 PubMedCrossRefGoogle Scholar
  11. 11.
    Sgarbanti R, Nencioni L, Amatore D, Coluccio P, Fraternale A, Sale P, Mammola CL, Carpino G, Gaudio E, Magnani M, Ciriolo MR, Garaci E, Palamara AT (2011) Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy. Antioxid Redox Signal 15(3):593–606. doi: 10.1089/ars.2010.3512 PubMedCrossRefGoogle Scholar
  12. 12.
    Shim HY, Quan X, Yi YS, Jung G (2011) Heat shock protein 90 facilitates formation of the HBV capsid via interacting with the HBV core protein dimers. Virology 410(1):161–169PubMedCrossRefGoogle Scholar
  13. 13.
    Ju HQ, Xiang YF, Xin BJ, Pei Y, Lu JX, Wang QL, Xia M, Qian CW, Ren Z, Wang SY (2011) Synthesis and in vitro anti-HSV-1 activity of a novel Hsp90 inhibitor BJ-B11. Bioorg Med Chem Lett 21(6):1675–1677PubMedCrossRefGoogle Scholar
  14. 14.
    Zur HH (1991) Viruses in human cancers. Science 254(5035):1167CrossRefGoogle Scholar
  15. 15.
    Deepti J, Munira Q, Neha G, Rajnish J, Nitin G (2009) Association of Epstein Barr virus infection (EBV) with breast cancer in rural indian women. Plos One 4(12):e8180CrossRefGoogle Scholar
  16. 16.
    Mazouni C, Fina F, Romain S, Ouafik L, Bonnier P, Brandone J-M, Martin P-M (2011) Epstein-Barr virus as a marker of biological aggressiveness in breast cancer. Br J Cancer 104(2):332PubMedCrossRefGoogle Scholar
  17. 17.
    Zhoulei L, Nicolas G, Ken H, Alexandra J, Michaela A, Annette F, Anja B, Axel W, Christian P, Markus S, Andreas B, Ulrich K, Tobias D (2012) FLT-PET is superior to FDG-PET for very early response prediction in NPM-ALK-positive lymphoma treated with targeted therapy. Cancer Res 72(19):5014–5024Google Scholar
  18. 18.
    Oki Y, Younes A, Knickerbocker J, Samaniego F, Nastoupil L, Hagemeister F, Romaguera J, Fowler N, Kwak L, Westin J (2015) Experience with HSP90 inhibitor AUY922 in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica 100(7):e272PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jhaveri K, Chandarlapaty S, Lake D, Gilewski T, Robson M, Goldfarb S, Drullinsky P, Sugarman S, Wasserheit-Leiblich C, Fasano J, Moynahan ME, D’Andrea G, Lim K, Reddington L, Haque S, Patil S, Bauman L, Vukovic V, El-Hariry I, Hudis C, Modi S (2014) A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin Breast Cancer 14(3):154–160. doi: 10.1016/j.clbc.2013.12.012 PubMedCrossRefGoogle Scholar
  20. 20.
    Agyeman AS, Jun WJ, Proia DA, Kim CR, Skor MN, Kocherginsky M, Conzen SD (2016) Hsp90 inhibition results in glucocorticoid receptor degradation in association with increased sensitivity to paclitaxel in triple-negative breast cancer. Hormones Cancer 7(2):114–126. doi: 10.1007/s12672-016-0251-8 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Geller R, Taguwa S (1823) Frydman J (2011) Broad action of Hsp90 as a host chaperone required for viral replication☆. Biochimica Et Biophysica Acta 3:698–706Google Scholar
  22. 22.
    Nakagawa SI, Umehara T, Matsuda C, Kuge S, Sudoh M, Kohara M (2007) Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem Biophys Res Commun 353(4):882–888PubMedCrossRefGoogle Scholar
  23. 23.
    Joshi P, Maidji E, Stoddart CA (2016) Inhibition of heat shock protein 90 prevents HIV rebound. J Biol Chem 291(19):10332–10346. doi: 10.1074/jbc.M116.717538 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chiosis G, Vilenchik M, Kim J, Solit D (2004) Hsp90: the vulnerable chaperone. Drug Discov Today 9(20):881–888. doi: 10.1016/S1359-6446(04)03245-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover K, Karras G, Lindquist S (2012) quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150(5):987–1001PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sellers RP, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR (2010) Design and synthesis of Hsp90 inhibitors: exploring the SAR of sansalvamide A derivatives. Bioorg Med Chem 18(18):6822–6856PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hoyle C, Smyllie H, Leak D (2015) Measles virus infection inactivates cellular protein phosphatase 5 with consequent suppression of Sp1 and c-Myc activities. J Virol 89(19):9709–9718CrossRefGoogle Scholar
  28. 28.
    Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS, Santagata S, Rozelle DK, Yen J, Rubins KH, Hacohen N (2014) The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog 10(2):e1003904PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Anderson I, Low JS, Weston S, Weinberger M, Zhyvoloup A, Labokha AA, Corazza G, Kitson RA, Moody CJ, Marcello A (2014) Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci 111(15):1528–1537CrossRefGoogle Scholar
  30. 30.
    Liu D, Wu AD, Cui L, Hao R, Wang Y, He J, Guo D (2014) Hepatitis B virus polymerase suppresses NF-κB signaling by inhibiting the activity of IKKs via interaction with Hsp90β. Plos One 9(3):e91658–e91658PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Song HL, Ran S, Mi NL, Kim CS, Lee H, Kong YY, Kim H, Jang SK (2008) A molecular chaperone glucose-regulated protein 94 blocks apoptosis induced by virus infection†. Hepatology 47(3):854–866PubMedCrossRefGoogle Scholar
  32. 32.
    Rathore APS, Haystead T, Das PK, Merits A, Ng ML, Vasudevan SG (2014) Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo ☆. Antivir Res 103(1):7–16PubMedCrossRefGoogle Scholar
  33. 33.
    Jeon YK, Park CH, Kim KY, Li YC, Kim J, Kim YA, Paik JH, Park BK, Kim CW, Kim YN (2007) The heat-shock protein 90 inhibitor, geldanamycin, induces apoptotic cell death in Epstein-Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol 213(2):170–179PubMedCrossRefGoogle Scholar
  34. 34.
    Kotsiopriftis M, Tanner JE, Alfieri C (2005) Heat shock protein 90 expression in Epstein-Barr virus-infected B cells promotes gammadelta T-cell proliferation in vitro. J Virol 79(11):7255–7261PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sun X, Kenney SC (2010) Hsp90 inhibitors: a potential treatment for latent EBV infection? Cell Cycle 9(9):1665–1666PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nayar U, Lu P, Goldstein RL, Vider J, Ballon G, Rodina A, Taldone T, Erdjument-Bromage H, Chomet M, Blasberg R (2013) Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies. Blood 122(16):2837–2847PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Field N, Low W, Daniels M, Howell S, Daviet L, Boshoff C, Collins M (2003) KSHV vFLIP binds to IKK-γ to activate IKK. J Cell Sci 116(Pt18):3721–3728PubMedCrossRefGoogle Scholar
  38. 38.
    Wei B, Cui Y, Huang Y, Liu H, Li L, Li M, Ruan KC, Zhou Q, Wang C (2015) Tom70 mediates Sendai virus-induced apoptosis on mitochondria. J Virol 89(7):3804–3818PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yang K, Shi H, Qi R, Sun S, Tang Y, Zhang B, Wang C (2006) Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells. Mol Biol Cell 17(3):1461–1471PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Basta S, Stoessel R, Basler M, van den Broek M, Groettrup M (2005) Cross-presentation of the long-lived lymphocytic choriomeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. J Immunol 175(2):796–805. doi: 10.4049/jimmunol.175.2.796 PubMedCrossRefGoogle Scholar
  41. 41.
    Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G (2014) Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 10(10):e1004424. doi: 10.1371/journal.ppat.1004424 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, Leong CR, Tsukiyama-Kohara K, Kohara M, Matsumoto M, Seya T, Oshiumi H (2016) Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Front Immunol. doi: 10.3389/fimmu.2016.00335 Google Scholar
  43. 43.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579. doi: 10.1038/nri855 PubMedGoogle Scholar
  44. 44.
    Anderson MR, Kashanchi F, Jacobson S (2016) Exosomes in viral disease. Neurotherapeutics 13(3):535–546PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bukong TN, Hou W, Kodys K, Szabo G (2013) Ethanol facilitates hepatitis C virus replication via up-regulation of GW182 and heat shock protein 90 in human hepatoma cells. Hepatology 57(1):70–80PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Keryerbibens C, Piochedurieu C, Villemant C, Souquère S, Nishi N, Hirashima M, Middeldorp J, Busson P (2006) Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6(1):1–8CrossRefGoogle Scholar
  47. 47.
    Sutmuller RPM, Brok MHMGMd, Kramer M, Bennink EJ, Toonen LWJ, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ, Sutmuller RP et al (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Investig. 116(2):485–494PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Duerfeldt AS, Peterson LB, Maynard JC, Ng CL, Eletto D, Ostrovsky O, Shinogle HE, Moore DS, Argon Y, Nicchitta CV (2012) Development of a Grp94 inhibitor. J Am Chem Soc 134(23):9796–9804PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hiscott J (2007) Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18(5–6):483–490PubMedCrossRefGoogle Scholar
  50. 50.
    Severa M, Fitzgerald KA (2007) TLR-mediated activation of type i ifn during antiviral immune responses: fighting the battle to win the war. Curr Top Microbiol Immunol 316(1):167–192PubMedGoogle Scholar
  51. 51.
    Pomerantz JL, Baltimore D (2002) Two pathways to NF-kappaB. Mol Cell 10(4):693–695PubMedCrossRefGoogle Scholar
  52. 52.
    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6(2):97–105PubMedCrossRefGoogle Scholar
  53. 53.
    Field NLW, Daniels M, Howell S, Daviet L, Boshoff C, Collins M (2003) KSHV vFLIP binds to IKK-gamma to activate IKK. J Cell Sci 116(18):3721–3728PubMedCrossRefGoogle Scholar
  54. 54.
    Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281(20):14361–14369PubMedCrossRefGoogle Scholar
  55. 55.
    Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275(14):10519–10526PubMedCrossRefGoogle Scholar
  56. 56.
    Lee MN, Roy M, Ong SE, Mertins P, Villani AC, Li W, Dotiwala F, Sen J, Doench JG, Orzalli MH (2013) Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nat Immunol 14(2):179PubMedCrossRefGoogle Scholar
  57. 57.
    Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9(2):401–410PubMedCrossRefGoogle Scholar
  58. 58.
    Eames HL, Udalova IA (2014) Interferon regulatory factors: role in transcriptional regulation of macrophage plasticity and activation. Springer, New YorkGoogle Scholar
  59. 59.
    Wendel HG, De SE, Fridman JS, Malina A, Ray S, Kogan S, Cordoncardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980):332–337PubMedCrossRefGoogle Scholar
  60. 60.
    Jane EP, Premkumar DR, Morales A, Foster KA, Pollack IF (2014) Inhibition of phosphatidylinositol 3-kinase/AKT signaling by NVP-BKM120 promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells. J Pharmacol Exp Ther 350(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tu Y, Gardner A, Lichtenstein A (2000) The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 60(23):6763–6770PubMedGoogle Scholar
  62. 62.
    Fillmore GC, Wang Q, Carey MJ, Kim CH, Elenitoba-Johnson KS, Lim MS (2005) Expression of Akt (protein kinase B) and its isoforms in malignant lymphomas. Leuk Lymphoma 46(12):1765PubMedCrossRefGoogle Scholar
  63. 63.
    Slupianek A, Nieborowskaskorska M, Hoser G, Morrione A, Majewski M, Xue L, Morris SW, Wasik MA, Skorski T (2001) Role of phosphatidylinositol 3-kinase-akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 61(5):2194–2199PubMedGoogle Scholar
  64. 64.
    Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205(4):498PubMedCrossRefGoogle Scholar
  65. 65.
    Morrison JA, Gulley ML, Pathmanathan R, Raabtraub N (2004) Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 64(15):5251–5260PubMedCrossRefGoogle Scholar
  66. 66.
    Jaffe ES (2001) Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, FranceGoogle Scholar
  67. 67.
    Sun X, Barlow EA, Ma S, Hagemeier SR, Duellman SJ, Burgess RR, Tellam J, Khanna R, Kenney SC (2010) Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci USA 107(7):3146–3151PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gao L, Harhaj EW (2013) HSP90 Protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-κB activation and HTLV-1 replication. J Virol 87(24):13640–13654PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tsou YL, Lin YW, Chang HW, Lin HY, Shao HY, Yu SL, Liu CC, Chitra E, Sia C, Chow YH (2013) Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy. Plos One 8(10):e77133–e77133PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79(16):10740–10749PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhong M, Zheng K, Chen M, Xiang Y, Jin F, Ma K, Qiu X, Wang Q, Peng T, Kitazato K, Wang Y (2014) Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin. PLoS One 9(6):e99425. doi: 10.1371/journal.pone.0099425 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Chase G, Tao D, Fodor E, Bo WL, Mayer D, Schwemmle M, Brownlee G (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377(2):431–439PubMedCrossRefGoogle Scholar
  73. 73.
    Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277(47):45306–45314PubMedCrossRefGoogle Scholar
  74. 74.
    Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81(3):1339–1349PubMedCrossRefGoogle Scholar
  75. 75.
    Panella S, Marcocci ME, Celestino I, Valente S, Zwergel C, Li PD, Nencioni L, Mai A, Palamara AT, Simonetti G (2016) MC1568 inhibits HDAC6/8 activity and influenza A virus replication in lung epithelial cells: role of Hsp90 acetylation. Future Med Chem 8(17):2017–2031Google Scholar
  76. 76.
    Kawashima D, Kanda T, Murata T, Saito S, Sugimoto A, Narita Y, Tsurumi T (2013) Nuclear transport of Epstein-Barr virus DNA polymerase is dependent on the BMRF1 polymerase processivity factor and molecular chaperone Hsp90. J Virol 87(11):6482–6491PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15(5):2347–2360PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vozzolo L, Loh B, Gane PJ, Tribak M, Zhou L, Anderson I, Nyakatura E, Jenner RG, Selwood D, Fassati A (2010) Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein. J Biol Chem 285(50):39314–39328PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sun X, Bristol JA, Iwahori S, Hagemeier SR, Meng Q, Barlow EA, Fingeroth JD, Tarakanova VL, Kalejta RF, Kenney SC (2013) Hsp90 Inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 87(18):10126–10138PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Czar MJ, Galigniana MD, Silverstein AM, Pratt WB (1997) Geldanamycin, a heat shock protein 90-binding benzoquinone ansamycin, inhibits steroid-dependent translocation of the glucocorticoid receptor from the cytoplasm to the nucleus†. Biochemistry 36(25):7776–7785PubMedCrossRefGoogle Scholar
  81. 81.
    Das I, Basantray I, Mamidi P, Nayak TK, Mamidi P, Chattopadhyay S, Chattopadhyay S (2014) Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. PLoS One 9(6):e100531. doi: 10.1371/journal.pone.0100531 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. Embo J 25(20):5015–5025PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Taguwa S, Okamoto T, Abe T, Mori Y, Suzuki T, Moriishi K, Matsuura Y (2008) Human butyrate-Induced transcript 1 interacts with hepatitis C virus NS5A and regulates viral replication. J Virol 82(6):2631–2641PubMedCrossRefGoogle Scholar
  84. 84.
    Okamoto T, Omori H, Kaname Y, Abe T, Nishimura Y, Suzuki T, Miyamura T, Yoshimori T, Moriishi K, Matsuura Y (2008) A single-amino-acid mutation in hepatitis C virus NS5A disrupting FKBP8 interaction impairs viral replication. J Virol 82(7):3480–3489PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Waxman L, Whitney M, Pollok BA, Kuo LC, Darke PL (2001) Host cell factor requirement for hepatitis C virus enzyme maturation. Proc Natl Acad Sci USA 98(24):13931–13935PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hu J, Flores D, Toft D, Wang X, Nguyen D (2004) Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 78(23):13122–13131PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci USA 93(3):1060–1064PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hu J, Anselmo D (2000) In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 74(24):11447–11455PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wang X, Grammatikakis N, Hu J (2002) Role of p50/CDC37 in hepadnavirus assembly and replication. J Biol Chem 277(27):24361–24367PubMedCrossRefGoogle Scholar
  90. 90.
    Vashist S, Urena L, Gonzalez-Hernandez MB, Choi J, De RA, Rocha-Pereira J, Neyts J, Hwang S, Wobus CE, Goodfellow I (2015) Molecular chaperone hsp90 is a therapeutic target for noroviruses. J Virol 89(12):6352–6363PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Connor JH, Mckenzie MO, Parks GD, Lyles DS (2007) Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology 362(1):109–119PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Geller R, Andino R, Frydman J (2013) Hsp90 inhibitors exhibit resistance-free antiviral activity against respiratory syncytial virus. PLoS One 8(2):e56762. doi: 10.1371/journal.pone.0056762 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Geller R, Vignuzzi M, Andino R, Frydman J (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractor. Genes Dev 21(2):195–205PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chen W, Sin SH, Wen KW, Damania B, Dittmer DP (2012) Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog 8(11):276–287Google Scholar
  95. 95.
    Miyata Y, Yahara I (2000) p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 19(11):1477–1484PubMedCrossRefGoogle Scholar
  96. 96.
    Ehrenkranz NJ, Meyer KF (2014) Multi-faceted proteomic characterization of host protein complement of rift valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. Plos One 9(5):e93483CrossRefGoogle Scholar
  97. 97.
    Hung CY, Tsai MC, Wu YP, Wang RY (2011) Identification of heat-shock protein 90 beta in Japanese encephalitis virus-induced secretion proteins. J Gen Virol 92(Pt 12):2803–2809PubMedCrossRefGoogle Scholar
  98. 98.
    Smith DR, Mccarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, Hensley LE, Connor JH (2010) Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antivir Res 87(2):187–194PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Czar MJ, Galigniana MD, Silverstein AM, Pratt WB (1997) Geldanamycin, a heat shock protein 90-binding benzoquinone ansamycin, inhibits steroid-dependent translocation of the glucocorticoid receptor from the cytoplasm to the nucleus. Biochemistry 36(25):7776–7785PubMedCrossRefGoogle Scholar
  100. 100.
    Chou CK, Wang LH, Lin HM, Chi CW (1992) Glucocorticoid stimulates hepatitis B viral gene expression in cultured human hepatoma cells. Hepatology 16(1):13–18PubMedCrossRefGoogle Scholar
  101. 101.
    Chalepakis G, Arnemann J, Slater E, Brüller HJ, Gross B, Beato M (1988) Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus. Cell 53(3):371–382PubMedCrossRefGoogle Scholar
  102. 102.
    Chou CK, Wang LH, Lin HM, Chi CW (1992) Glucocorticoid stimulates hepatitis B viral gene expression in cultured human hepatoma cells. Hepatology 16(1):13–18PubMedCrossRefGoogle Scholar
  103. 103.
    Li YH, Tao PZ, Liu YZ, Jiang JD (2004) Geldanamycin, a ligand of heat shock protein 90, inhibits the replication of herpes simplex virus type 1 in vitro. Antimicrob Agents Chemother 48(3):867–872PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Brice A, Moseley GW (2013) Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 8(3):229–243CrossRefGoogle Scholar
  105. 105.
    Radtke K, Döhner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8(3):387–400PubMedCrossRefGoogle Scholar
  106. 106.
    Kannan H (2009) The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. J Virol 83(13):6375–6382PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Perdiz D, Mackeh R, Poüs C, Baillet A (2010) The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 23(5):763–771PubMedCrossRefGoogle Scholar
  108. 108.
    Husain M, Gupta C (1997) Interactions of viral matrix protein and nucleoprotein with the host cell cytoskeletal actin in influenza viral infection. Curr Sci 73(1):40–47Google Scholar
  109. 109.
    Xuan C, Qiao W, Gao J, Liu M, Zhang X, Cao Y, Chen Q, Geng Y, Zhou J (2007) Regulation of microtubule assembly and stability by the transactivator of transcription protein of Jembrana disease virus. J Biol Chem 282(39):28800–28806PubMedCrossRefGoogle Scholar
  110. 110.
    Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, Tanaka J (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 16(2):135–146PubMedCrossRefGoogle Scholar
  111. 111.
    Staff PO (2015) Heat shock protein 90 positively regulates chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. Plos One 10(6):e100531Google Scholar
  112. 112.
    Hu J, Toft DO, Seeger C (1997) Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. Embo J 16(1):59–68PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Taldone T, Sun W, Chiosis G (2009) Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 17(6):2225–2235PubMedCrossRefGoogle Scholar
  114. 114.
    Solit DB, Zheng FF, Drobnjak M, Münster PN, Higgins B, Verbel D, Heller G, Tong W, Cordoncardo C, Agus DB (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res Off J Am Assoc Cancer Res 8(5):986–993Google Scholar
  115. 115.
    Liao ZY, Zhen YS (2001) Advances in antitumor activity of the hsp90 inhibitor geldanamycin. Yao xue xue bao (Acta pharmaceutica Sinica) 36(9):716–720Google Scholar
  116. 116.
    Jez JM, Chen JC, Rastelli G, Stroud RM, Santi DV (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10(4):361–368PubMedCrossRefGoogle Scholar
  117. 117.
    Shen G, Wang M, Welch TR, Blagg BSJ (2006) Design, synthesis, and structureactivity relationships for chimeric inhibitors of Hsp90. J Org Chem 71(20):7618–7631PubMedCrossRefGoogle Scholar
  118. 118.
    Roe SM, Obrien R, Ladbury JE, Piper PW, Pearl LH, Prodromou C (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42(2):260–266PubMedCrossRefGoogle Scholar
  119. 119.
    Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS (2007) Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7(15):2603–2616PubMedCrossRefGoogle Scholar
  120. 120.
    Agnew EB, Wilson RH, Grem JL, Neckers L, Bi D, Takimoto CH (2001) Measurement of the novel antitumor agent 17-(allylamino)-17-demethoxygeldanamycin in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 755(1–2):237–243PubMedCrossRefGoogle Scholar
  121. 121.
    Gao J, Xiao S, Liu X, Wang L, Zhang X, Ji Q, Yue W, Mo D, Chen Y (2014) Inhibition of HSP90 attenuates porcine reproductive and respiratory syndrome virus production in vitro. Virol J 11(1):1–9CrossRefGoogle Scholar
  122. 122.
    Ujino S, Yamaguchi S, Shimotohno K, Takaku H (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3. J Biol Chem 284(11):6841–6846PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kim MG, Moon JS, Kim EJ, Lee SH, Oh JW (2012) Destabilization of PDK1 by Hsp90 inactivation suppresses hepatitis C virus replication through inhibition of PRK2-mediated viral RNA polymerase phosphorylation. Biochem Biophys Res Commun 421(1):112PubMedCrossRefGoogle Scholar
  124. 124.
    Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W (2006) Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 80(5):2127–2140PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA, Steed PM, Hall SE (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58(12):3765–3775. doi: 10.1002/art.24047 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and TechnologyJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.College of PharmacyJinan UniversityGuangzhouPeople’s Republic of China
  3. 3.Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan

Personalised recommendations