Skip to main content

Advertisement

Log in

Development of a stable Japanese encephalitis virus replicon cell line for antiviral screening

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Japanese encephalitis virus (JEV), an important pathogen in Eastern and Southern Asia and the Pacific, has spread to Australia and other territories in recent years. Although the vaccine for JEV has been used in some countries, development of efficient antiviral drugs is still an urgent requirement. Replicon systems have been widely used in the research of viral replication and antiviral screening for West Nile virus (WNV), yellow fever virus (YFV) and dengue virus (DENV). Here, a novel JEV replicon harboring the Rluc and Pac gene (JEV-Pac-Rluc-Rep) was constructed. Furthermore, we established a BHK-21 cell line harboring JEV-Pac-Rluc-Rep (BHK-21/PAC/Rluc cell line) through continuous puromycin selection. Characterization of cell line stability showed that the replicon RNA could persistently replicate in this cell line for at least up to 10 rounds of passage. Using a known flavivirus inhibitor, the JEV replicon cell line was validated for antiviral screening. The JEV replicon cell line will be a valuable tool for both compound screening and viral replication studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, Boer E, Wolfinbarger JB, Bloom ME (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79:12828–12839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Corver J, Lenches E, Smith K, Robison RA, Sando T, Strauss EG, Strauss JH (2003) Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77:2265–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hsu YC, Chen NC, Chen PC, Wang CC, Cheng WC, Wu HN (2012) Identification of a small-molecule inhibitor of dengue virus using a replicon system. Arch Virol 157:681–688

    Article  CAS  PubMed  Google Scholar 

  4. Huang YT, Liao JT, Yen LC, Chang YK, Lin YL, Liao CL (2015) Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges. J Biomed Sci 22:74

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jones CT, Patkar CG, Kuhn RJ (2005) Construction and applications of yellow fever virus replicons. Virology 331:247–259

    Article  CAS  PubMed  Google Scholar 

  6. Khromykh AA, Westaway EG (1997) Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71:1497–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khromykh AA, Sedlak PL, Guyatt KJ, Hall RA, Westaway EG (1999) Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol 73:10272–10280

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Khromykh AA, Sedlak PL, Westaway EG (1999) trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol 73:9247–9255

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Khromykh AA, Sedlak PL, Westaway EG (2000) cis- and trans-acting elements in flavivirus RNA replication. J Virol 74:3253–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li SH, Li XF, Zhao H, Deng YQ, Yu XD, Zhu SY, Jiang T, Ye Q, Qin ED, Qin CF (2013) Development and characterization of the replicon system of Japanese encephalitis live vaccine virus SA14-14-2. Virol J 10:64

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li XD, Li XF, Ye HQ, Deng CL, Ye Q, Shan C, Shang BD, Xu LL, Li SH, Cao SB, Yuan ZM, Shi PY, Qin CF, Zhang B (2014) Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. J Gen Virol 95:806–815

    Article  CAS  PubMed  Google Scholar 

  12. Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM, Gong P, Zhang B (2014) The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 8:e2891

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li XD, Ye HQ, Deng CL, Liu SQ, Zhang HL, Shang BD, Shi PY, Yuan ZM, Zhang B (2015) Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. J Gen Virol 96:1264–1275

    Article  CAS  PubMed  Google Scholar 

  14. Li XD, Deng CL, Ye HQ, Zhang HL, Zhang QY, Chen DD, Zhang PT, Shi PY, Yuan ZM, Zhang B (2016) Transmembrane domains of NS2B contribute to both viral RNA replication and particle formation in Japanese encephalitis virus. J Virol 90:5735–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin RJ, Liao CL, Lin E, Lin YL (2004) Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 78:9285–9294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu WJ, Sedlak PL, Kondratieva N, Khromykh AA (2002) Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 76:10766–10775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA (2004) Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 78:12225–12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lo MK, Tilgner M, Shi PY (2003) Potential high-throughput assay for screening inhibitors of West Nile virus replication. J Virol 77:12901–12906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masse N, Davidson A, Ferron F, Alvarez K, Jacobs M, Romette JL, Canard B, Guillemot JC (2010) Dengue virus replicons: production of an interserotypic chimera and cell lines from different species, and establishment of a cell-based fluorescent assay to screen inhibitors, validated by the evaluation of ribavirin’s activity. Antivir Res 86:296–305

    Article  CAS  PubMed  Google Scholar 

  20. Molenkamp R, Kooi EA, Lucassen MA, Greve S, Thijssen JCP, Spaan WJM, Bredenbeek PJ (2003) Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol 77:1644–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ng CY, Gu F, Phong WY, Chen YL, Lim SP, Davidson A, Vasudevan SG (2007) Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antivir Res 76:222–231

    Article  CAS  PubMed  Google Scholar 

  22. Pang X, Zhang M, Dayton AI (2001) Development of dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol 1:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Percy N, Barclay WS, Garcia-Sastre A, Palese P (1994) Expression of a foreign protein by influenza A virus. J Virol 68:4486–4492

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pyankov OV, Bodnev SA, Pyankova OG, Solodkyi VV, Pyankov SA, Setoh YX, Volchkova VA, Suhrbier A, Volchkov VV, Agafonov AA, Khromykh AA (2015) A Kunjin replicon virus-like particle vaccine provides protection against ebola virus infection in nonhuman primates. J Infect Dis 212(Suppl 2):S368–S371

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qing M, Liu W, Yuan Z, Gu F, Shi PY (2010) A high-throughput assay using dengue-1 virus-like particles for drug discovery. Antivir Res 86:163–171

    Article  CAS  PubMed  Google Scholar 

  26. Rossi SL, Zhao Q, O’Donnell VK, Mason PW (2005) Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action. Virology 331:457–470

    Article  CAS  PubMed  Google Scholar 

  27. Rossi SL, Fayzulin R, Dewsbury N, Bourne N, Mason PW (2007) Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo. Virology 364:184–195

    Article  CAS  PubMed  Google Scholar 

  28. Shi PY, Tilgner M, Lo MK (2002) Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology 296:219–233

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang CC, Hu HS, Wu RH, Wu SH, Lee SJ, Jiaang WT, Chern JH, Huang ZS, Wu HN, Chang CM, Yueh A (2014) A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother 58:110–119

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yin Z, Chen YL, Schul W, Wang QY, Gu F, Duraiswamy J, Kondreddi RR, Niyomrattanakit P, Lakshminarayana SB, Goh A, Xu HY, Liu W, Liu B, Lim JY, Ng CY, Qing M, Lim CC, Yip A, Wang G, Chan WL, Tan HP, Lin K, Zhang B, Zou G, Bernard KA, Garrett C, Beltz K, Dong M, Weaver M, He H, Pichota A, Dartois V, Keller TH, Shi PY (2009) An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA 106:20435–20439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yun SI, Kim SY, Rice CM, Lee YM (2003) Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yun SI, Choi YJ, Yu XF, Song JY, Shin YH, Ju YR, Kim SY, Lee YM (2007) Engineering the Japanese encephalitis virus RNA genome for the expression of foreign genes of various sizes: implications for packaging capacity and RNA replication efficiency. J Neurovirol 13:522–535

    Article  CAS  PubMed  Google Scholar 

  34. Yun SI, Lee YM (2014) Japanese encephalitis: the virus and vaccines. Hum Vaccines Immunother 10:263–279

    Article  CAS  Google Scholar 

  35. Zhang CH, Ma WQ, Yang YL, Wang HM, Dong FT, Huang ZX (2015) Median effective effect-site concentration of sufentanil for wake-up test in adolescents undergoing surgery: a randomized trial. BMC Anesthesiol 15:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Center for Instrumental Analysis and Metrology, Wuhan Institute of Virology and Wuhan Key Laboratory on Emerging Infectious Diseases and Biosafety for helpful assistance during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Qing Ye.

Ethics declarations

Funding

This study was funded by the National Key Research and Development Program of China (2016YFD0500400 to B.Z. and 2016YFC1200400 to H.Q.Y.), the National Natural Science Foundation of China (81572003 to B.Z.).

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QY., Li, XD., Liu, SQ. et al. Development of a stable Japanese encephalitis virus replicon cell line for antiviral screening. Arch Virol 162, 3417–3423 (2017). https://doi.org/10.1007/s00705-017-3508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3508-9

Navigation