Skip to main content
Log in

Genomic and antigenic relationships between two ‘HoBi’-like strains and other members of the Pestivirus genus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

‘HoBi’-like viruses comprise a putative new species within the genus Pestivirus of the family Flaviviridae. ‘HoBi’-like viruses have been detected worldwide in batches of fetal calf serum, in surveillance programs for bovine pestiviruses and from animals presenting clinical signs resembling bovine viral diarrhea virus (BVDV)-associated diseases. To date, few complete genome sequences of ‘HoBi’-like viruses are available in public databases. Moreover, detailed analyses of such genomes are still scarce. In an attempt to expand data on the genetic diversity and biology of pestiviruses, two genomes of ‘HoBi’-like viruses recovered from Brazilian cattle were described and characterized in this study. Analysis of the whole genome and antigenic properties of these two new ‘HoBi’-like isolates suggest that these viruses are genetically close to recognized pestiviruses. The present data provide evidence that ‘HoBi’-like viruses are members of the genus Pestivirus and should be formally recognized as a novel species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simmonds P, Becher P, Collett MS et al (2012) Family Flaviviridae. In: King A, Lefkowitz E, Adams MJ, Carstens EB (eds) Ninth report of the international committee on taxonomy of viruses. Academic Press, San Diego, pp 1003–1020

    Google Scholar 

  2. Avalos-Ramirez R, Orlich M, Thiel HJ, Becher P (2001) Evidence for the presence of two novel pestivirus species. Virology 286:456–465. doi:10.1006/viro.2001.1001

    Article  CAS  PubMed  Google Scholar 

  3. Vilcek S, Ridpath JF, Van Campen H et al (2005) Characterization of a novel pestivirus originating from a pronghorn antelope. Virus Res 108:187–193. doi:10.1016/j.virusres.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  4. Kirkland PD, Frost MJ, Finlaison DS et al (2007) Identification of a novel virus in pigs-Bungowannah virus: a possible new species of pestivirus. Virus Res 129:26–34. doi:10.1016/j.virusres.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  5. Oguzoglu TC, Tan MT, Toplu N et al (2009) Border disease virus (BDV) infections of small ruminants in Turkey: a new BDV subgroup? Vet Microbiol 135:374–379. doi:10.1016/j.vetmic.2008.09.085

    Article  CAS  PubMed  Google Scholar 

  6. Thabti F, Letellier C, Hammami S et al (2005) Detection of a novel border disease virus subgroup in Tunisian sheep. Arch Virol 150:215–229. doi:10.1007/s00705-004-0427-3

    Article  CAS  PubMed  Google Scholar 

  7. Hause BM, Collin EA, Peddireddi L et al (2016) Discovery of a novel putative atypical porcine pestivirus in pigs in the USA. J Gen Virol 96:2994–2998. doi:10.1099/jgv.0.000251

    Article  Google Scholar 

  8. Firth C, Bhat M, Firth MA et al (2014) Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. mBio 5:1–16. doi:10.1128/mBio.01933-14

    Article  Google Scholar 

  9. Wu Z, Ren X, Yang L et al (2012) Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol 86:10999–11012. doi:10.1128/JVI.01394-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schirrmeier H, Strebelow G, Depner K et al (2004) Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species. J Gen Virol 85:3647–3652. doi:10.1099/vir.0.80238-0

    Article  CAS  PubMed  Google Scholar 

  11. Bauermann FV, Ridpath JF, Weiblen R et al (2013) HoBi-like viruses: an emerging group of pestiviruses. J Vet Diagn Investig 25:6–15. doi:10.1177/1040638712473103

    Article  Google Scholar 

  12. Stalder HP, Meier P, Pfaffen G et al (2005) Genetic heterogeneity of pestiviruses of ruminants in Switzerland. Prev Vet Med 72:37–41. doi:10.1016/j.prevetmed.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Kampa J, Belák S et al (2009) Virus recovery and full-length sequence analysis of atypical bovine pestivirus Th/04_KhonKaen. Vet Microbiol 138:62–68. doi:10.1016/j.vetmic.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  14. Peletto S, Zuccon F, Pitti M et al (2012) Detection and phylogenetic analysis of an atypical pestivirus, strain IZSPLV_To. Res Vet Sci 92:147–150. doi:10.1016/j.rvsc.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  15. Mao L, Li W, Zhang W et al (2012) Genome sequence of a novel Hobi-like pestivirus in China. J Virol 86:12444. doi:10.1128/JVI.02159-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao S, Du J, Tian Z et al (2016) Genome analysis of an atypical bovine pestivirus from fetal bovine serum. Virus Genes 52:561–563. doi:10.1007/s11262-016-1321-2

    Article  CAS  PubMed  Google Scholar 

  17. Decaro N, Lucente MS, Mari V et al (2011) Atypical pestivirus and severe respiratory disease in calves, Europe. Emerg Infect Dis 17:1549–1552. doi:10.3201/eid1708.101447

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bianchi E, Martins M, Weiblen R et al (2011) Perfil genotípico e antigênico de amostras do vírus da diarreia viral bovina isoladas no Rio Grande do Sul (2000–2010). Pesquisa Veterinária Brasileira 31:649–655. doi:10.1590/S0100-736X2011000800003

    Article  Google Scholar 

  19. Weber MN, Mósena ACS, Simões SVD et al (2014) Clinical presentation resembling mucosal disease associated with “HoBi”-like pestivirus in a field outbreak. Transbound Emerg Dis 63:92–100. doi:10.1111/tbed.12223

    Article  PubMed  Google Scholar 

  20. Silveira S, Weber MN, Mosena ACS et al (2015) Genetic diversity of Brazilian bovine pestiviruses detected between 1995 and 2014. Transbound Emerg Dis 64:613–623. doi:10.1111/tbed.12427

    Article  PubMed  Google Scholar 

  21. Stahl K, Kampa J, Alenius S et al (2007) Natural infection of cattle with an atypical ‘HoBi’-like pestivirus-implications for BVD control and for the safety of biological products. Vet Res 38:517–523. doi:10.1051/vetres:2007012

    Article  PubMed  Google Scholar 

  22. Houe H (2003) Economic impact of BVDV infection in dairies. Biologicals 31:137–143. doi:10.1016/S1045-1056(03)00030-7

    Article  PubMed  Google Scholar 

  23. Xia H, Uttenthal Å, Alenius S et al (2012) Atypical pestivirus and severe respiratory disease in calves, Europe. Emerg Infect Dis 18:1917–1918. doi:10.3201/eid1811.111298

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cortez A, Heinemann MB, Castro A et al (2006) Genetic characterization of Brazilian bovine viral diarrhea virus isolates by partial nucleotide sequencing of the 5’-UTR region. Pesquisa Veterinária Brasileira 26:211–216. doi:10.1590/S0100-736X2006000400005

    Article  Google Scholar 

  25. Decaro N, Lucente MS, Mari V et al (2012) Hobi-like pestivirus in aborted bovine fetuses. J Clin Microbiol 50:509–512. doi:10.1128/JCM.05887-11

    Article  PubMed  PubMed Central  Google Scholar 

  26. Decaro N, Losurdo M, Lucente MS et al (2013) Persistent infection caused by Hobi-like pestivirus. J Clin Microbiol 51:1241–1243. doi:10.1128/JCM.03134-12

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bauermann FV, Falkenberg SM, Vander Ley B et al (2014) Generation of calves persistently infected with HoBi-like pestivirus and comparison of methods for detection of these persistent infections. J Clin Microbiol 52:3845–3852. doi:10.1128/JCM.01563-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Decaro N, Lanave G, Lucente MS et al (2014) Mucosal disease-like syndrome in a calf persistently infected by Hobi-like pestivirus. J Clin Microbiol 52:2946–2954. doi:10.1128/JCM.00986-14

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bauermann FV, Flores EF, Ridpath JF (2012) Antigenic relationships between Bovine viral diarrhea virus 1 and 2 and HoBi virus: possible impacts on diagnosis and control. J Vet Diagn Investig 24:253–261. doi:10.1177/1040638711435144

    Article  Google Scholar 

  30. Freshney R (1992) Animal cell culture: a practical approach, 2nd edn. Oxford University Press, New York

    Google Scholar 

  31. Roehe PM, Da Silva TC, Nardi NB et al (1997) Diferenciação entre os vírus da rinotraqueíte infecciosa bovina (BHV-1) e herpesvírus da encefalite bovina (BHV-5) com anticorpos monoclonais. Pesquisa Veterinária Brasileira 17:41–44. doi:10.1590/S0100-736X1997000100007

    Article  Google Scholar 

  32. Bauermann FV, Harmon A, Flores EF et al (2013) In vitro neutralization of HoBi-like viruses by antibodies in serum of cattle immunized with inactivated or modified live vaccines of bovine viral diarrhea viruses 1 and 2. Vet Microbiol 166:242–245. doi:10.1016/j.vetmic.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  33. Oliveira E, Roehe P, Schaefer R et al (1998) Estudio preliminar de pestivirus brasilenos mediante anticuerpos monoclonales. Avances en Ciencias Veterinarias 13:30–36

    Google Scholar 

  34. Canal CW, Strasser M, Hertig C et al (1998) Detection of antibodies to bovine viral diarrhoea virus (BVDV) and characterization of genomes of BVDV from Brazil. Vet Microbiol 63:85–97. doi:10.1016/S0378-1135(98)00232-6

    Article  CAS  PubMed  Google Scholar 

  35. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Brabaham bioinformatics. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 09 Sep 2016

  36. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  38. Katoh K, Misawa K, Kuma K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi:10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evolut 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  40. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  41. Simossis VA, Heringa J (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 33:W289–W294. doi:10.1093/nar/gki390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Becher P, Orlich M, Thiel R (2000) Mutations in the 5’ nontranslated region of bovine viral diarrhea virus result in altered growth characteristics. J Virol 74:7884–7894. doi:10.1128/JVI.74.17.7884-7894.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frolov I, Mcbride MS, Rice CM et al (1998) Cis-acting RNA elements required for replication of bovine viral diarrhea virus-hepatitis C virus 5’nontranslated region chimeras. RNA 4:1418–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Homa FL, Glorioso JC, Levine M (1988) A specific 15-bp TATA box promoter element is required for expression of a herpes simplex virus type 1 late gene. Genes Dev 2:40–53. doi:10.1101/gad.2.1.40

    Article  CAS  PubMed  Google Scholar 

  45. Nakajima N, Horikoshi M, Roeder RG (1988) Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box promoter interactions of TFIID. Mol Cell Biol 8:4028–4040. doi:10.1128/MCB.8.10.4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirkland PD, Frost MJ, King KR et al (2015) Genetic and antigenic characterization of Bungowannah virus, a novel pestivirus. Vet Microbiol 178:252–259. doi:10.1016/j.vetmic.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  47. Vilcek S, Paton D, Lowings P et al (1999) Genetic analysis of pestiviruses at the 3′ end of the genome. Virus genes 18:107–114. doi:10.1023/A:1008000231604

    Article  CAS  PubMed  Google Scholar 

  48. Stark R, Meyers G, Rümenapf T et al (1993) Processing of pestivirus polyprotein : cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol 67:7088–7095

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Neill JD (2013) Molecular biology of bovine viral diarrhea virus. Biologicals 41:2–7. doi:10.1016/j.biologicals.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  50. Lackner T, Mu A, Pankraz A et al (2004) Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 78:10765–10775. doi:10.1128/JVI.78.19.10765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bazan F, Fletterickt RJ (1988) Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85:7872–7876. doi:10.1073/pnas.85.21.7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y, Wang J, Kanai R et al (2013) Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proc Natl Acad Sci USA 110:6805–6810. doi:10.1073/pnas.1300524110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang D, Sainz IF, Ansari IH et al (2003) The envelope glycoprotein E2 is a determinant of cell culture tropism in ruminant pestiviruses. J Gen Virol 84:1269–1274. doi:10.1099/vir.0.18557-0

    Article  CAS  PubMed  Google Scholar 

  54. Weiland E, Stark R, Haas B et al (1990) Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J Virol 64:3563–3569

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Becher P, Orlich M, Kosmidou A et al (1999) Identification of novel groups and genetic diversity of pestiviruses: implications for classification. Virology 262:64–71. doi:10.1006/viro.1999.9872

    Article  CAS  PubMed  Google Scholar 

  56. Omari KE, Iourin O, Harlos K et al (2012) Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep 3:30–35. doi:10.1016/j.celrep.2012.12.001

    PubMed  Google Scholar 

  57. Fernandez-Sainz I, Holinka LG, Gavrilov BK et al (2009) Alteration of the N-linked glycosylation condition in E1 glycoprotein of classical swine fever virus strain Brescia alters virulence in swine. Virology 386:210–216. doi:10.1016/j.virol.2008.12.042

    Article  CAS  PubMed  Google Scholar 

  58. Risatti GR, Holinka LG, Sainz IF et al (2007) Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology 364:371–382. doi:10.1016/j.virol.2007.02.025

    Article  CAS  PubMed  Google Scholar 

  59. Gavrilov BK, Rogers K, Fernandez-Sainz IJ et al (2011) Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology 420:135–145. doi:10.1016/j.virol.2011.08.025

    Article  CAS  PubMed  Google Scholar 

  60. Lang Y, Gao S, Du J et al (2014) Polymorphic genetic characterization of E2 gene of bovine viral diarrhea virus in China. Vet Microbiol 174:554–559. doi:10.1016/j.vetmic.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  61. Weber MN, Bauermann FV, Canal CW et al (2017) Temporal dynamics of “ HoBi ” -like pestivirus quasispecies in persistently infected calves generated under experimental conditions. Virus Res 227:23–33. doi:10.1016/j.virusres.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  62. Tao J, Wang Y, Wang J et al (2013) Identification and genetic characterization of new bovine viral diarrhea virus genotype 2 strains in pigs isolated in China. Virus Genes 46:81–87. doi:10.1007/s11262-012-0837-3

    Article  CAS  PubMed  Google Scholar 

  63. Zhu L, Lu H, Cao Y et al (2016) Molecular characterization of a novel bovine viral diarrhea virus isolate SD-15. PLoS One 11:e0165044. doi:10.1371/journal.pone.0165044

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu L, Xia H, Baule C et al (2010) Effects of methodology and analysis strategy on robustness of pestivirus phylogeny. Virus Res 147:47–52. doi:10.1016/j.virusres.2009.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) supported this work. CWC and PMR are 1C and 1A research fellows, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio W. Canal.

Ethics declarations

Conflict of interest

The authors whose names are listed below certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, participation in speakers’ bureaus, membership employment, consultancies, stock ownership, or other equity interest, and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. We have no conflict of interest.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mósena, A.C.S., Cibulski, S.P., Weber, M.N. et al. Genomic and antigenic relationships between two ‘HoBi’-like strains and other members of the Pestivirus genus. Arch Virol 162, 3025–3034 (2017). https://doi.org/10.1007/s00705-017-3465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3465-3

Navigation