Skip to main content

Advertisement

Log in

c-Jun integrates signals from both MEK/ERK and MKK/JNK pathways upon vaccinia virus infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Usurpation of the host’s signalling pathways is a common strategy employed by viruses to promote their successful replication. Here we show that infection with the orthopoxvirus vaccinia virus (VACV) leads to sustained stimulation of c-Jun activity during the entire infective cycle. This stimulation is temporally regulated through MEK/ERK or MKK/JNK pathways, i.e. during the early/mid phase (1 to 6 hpi) and in the late phase (9 to 24 hpi) of the infective cycle, respectively. As a transcriptional regulator, upon infection with VACV, c-Jun is translocated from the cytoplasm to the nucleus, where it binds to the AP-1 DNA sequence found at the promoter region of its target genes. To investigate the role played by c-Jun during VACV replication cycle, we generated cell lines that stably express a c-Jun-dominant negative (DNc-Jun) mutation. Our data revealed that c-Jun is required during early infection to assist with viral DNA replication, as demonstrated by the decreased amount of viral DNA found in the DNc-Jun cells. We also demonstrated that c-Jun regulates the expression of the early growth response gene (egr-1), a gene previously shown to affect VACV replication mediated by MEK/ERK signalling. VACV-induced stimulation of the MKK/JNK/JUN pathway impacts viral dissemination, as we observed a significant reduction in both viral yield, during late stages of infection, and virus plaque size. Collectively, our data suggest that, by modulating the host’s signalling pathways through a common target such as c-Jun, VACV temporally regulates its infective cycle in order to successfully replicate and subsequently spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moss B (2007) Poxviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, New York, pp 2905–2945

    Google Scholar 

  2. Smith GL et al (2013) Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 94(Pt 11):2367–2392

    Article  CAS  PubMed  Google Scholar 

  3. Brady G, Bowie AG (2014) Innate immune activation of NFkappaB and its antagonism by poxviruses. Cytokine Growth Factor Rev 25(5):611–620

    Article  CAS  PubMed  Google Scholar 

  4. Bonjardim CA, Ferreira PC, Kroon EG (2009) Interferons: signaling, antiviral and viral evasion. Immunol Lett 122(1):1–11

    Article  CAS  PubMed  Google Scholar 

  5. McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3(3):201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caceres A et al (2013) Involvement of the cellular phosphatase DUSP1 in vaccinia virus infection. PLoS Pathog 9(11):e1003719

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andrade AA et al (2004) The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem J 381(Pt 2):437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Magalhaes JC et al (2001) A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276(42):38353–38360

    Article  PubMed  Google Scholar 

  9. Silva PN et al (2006) Differential role played by the MEK/ERK/EGR-1 pathway in orthopoxviruses vaccinia and cowpox biology. Biochem J 398(1):83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4(11):a011254

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang SH, Sharrocks AD, Whitmarsh AJ (2013) MAP kinase signalling cascades and transcriptional regulation. Gene 513(1):1–13

    Article  CAS  PubMed  Google Scholar 

  12. Zeke A et al (2016) JNK signaling: regulation and functions based on complex protein–protein partnerships. Microbiol Mol Biol Rev 80(3):793–835

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65(22):3525–3544

    Article  CAS  PubMed  Google Scholar 

  14. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

    Article  CAS  PubMed  Google Scholar 

  16. Plotnikov A et al (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813(9):1619–1633

    Article  CAS  PubMed  Google Scholar 

  17. Hazzalin CA, Mahadevan LC (2002) MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3(1):30–40

    Article  CAS  PubMed  Google Scholar 

  18. Dunn C et al (2002) Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal 14(7):585–593

    Article  CAS  PubMed  Google Scholar 

  19. Liu X et al (2012) Varicella-Zoster virus ORF12 protein triggers phosphorylation of ERK1/2 and inhibits apoptosis. J Virol 86(6):3143–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi W et al (2014) MEK/ERK signaling pathway is required for enterovirus 71 replication in immature dendritic cells. Virol J 11:227

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Cohen JI (2015) Epstein–Barr virus (EBV) tegument protein BGLF2 promotes EBV reactivation through activation of the p38 mitogen-activated protein kinase. J Virol 90(2):1129–1138

    Article  PubMed  PubMed Central  Google Scholar 

  22. Torres AA et al (2016) Multiple Bcl-2 family immunomodulators from vaccinia virus regulate MAPK/AP-1 activation. J Gen Virol 97(9):2346–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pereira AC et al (2012) A vaccinia virus-driven interplay between the MKK4/7-JNK1/2 pathway and cytoskeleton reorganization. J Virol 86(1):172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tournier C et al (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288(5467):870–874

    Article  CAS  PubMed  Google Scholar 

  25. Alam J et al (1999) Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078

    Article  CAS  PubMed  Google Scholar 

  26. Husain M, Moss B (2001) Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol 75(16):7528–7542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joklik WK (1962) The purification fo four strains of poxvirus. Virology 18:9–18

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniats T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, Cold Spring Harbor Laboratory

    Google Scholar 

  29. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    Article  CAS  PubMed  Google Scholar 

  30. Schreck I et al (2011) c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK. Biochem Biophys Res Commun 407(4):735–740

    Article  CAS  PubMed  Google Scholar 

  31. Moss B (2013) Poxvirus DNA replication. Cold Spring Harb Perspect Biol 5(9):a010199

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schwachtgen JL, Campbell CJ, Braddock M (2000) Full promoter sequence of human early growth response factor-1 (Egr-1): demonstration of a fifth functional serum response element. DNA Seq 10(6):429–432

    Article  CAS  PubMed  Google Scholar 

  33. Alto NM, Orth K (2012) Subversion of cell signaling by pathogens. Cold Spring Harb Perspect Biol 4(9):a006114

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soares JA et al (2009) Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infections is required for both host survival and viral replication. J Virol 83(13):6883–6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schweneker M et al (2012) The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence. J Virol 86(4):2323–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leppa S et al (1998) Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J 17(15):4404–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Avey D et al (2015) Phosphoproteomic analysis of KSHV-infected cells reveals roles of ORF45-activated RSK during lytic replication. PLoS Pathog 11(7):e1004993

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang W et al (2016) ERK/c-Jun recruits Tet1 to induce Zta expression and Epstein–Barr virus reactivation through DNA demethylation. Sci Rep 6:34543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santos CR et al (2006) Vaccinia virus B1R kinase interacts with JIP1 and modulates c-Jun-dependent signaling. J Virol 80(15):7667–7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oh J, Broyles SS (2005) Host cell nuclear proteins are recruited to cytoplasmic vaccinia virus replication complexes. J Virol 79(20):12852–12860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3(11):859–868

    Article  CAS  PubMed  Google Scholar 

  42. Leite F, Way M (2015) The role of signalling and the cytoskeleton during Vaccinia virus egress. Virus Res 209:87–99

    Article  CAS  PubMed  Google Scholar 

  43. Javelaud D et al (2003) Disruption of basal JNK activity differentially affects key fibroblast functions important for wound healing. J Biol Chem 278(27):24624–24628

    Article  CAS  PubMed  Google Scholar 

  44. Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206(Pt 7):1107–1115

    Article  CAS  PubMed  Google Scholar 

  45. Xie J et al (2005) Kaposi’s sarcoma-associated herpesvirus induction of AP-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J Virol 79(24):15027–15037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benn J et al (1996) Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 70(8):4978–4985

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nijhara R et al (2001) Sustained activation of mitogen-activated protein kinases and activator protein 1 by the hepatitis B virus X protein in mouse hepatocytes in vivo. J Virol 75(21):10348–10358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jawed Alam (Alton Ochsner Medical Foundation, New Orleans, Louisiana, USA) who kindly provided us with the c-Jun DNA constructs. We also thank Dr. M. C. Sogayar (Department of Biochemistry, University of São Paulo, São Paulo, Brazil), who kindly provided us with the A31 cell line, and Dr. R. Davis (Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA) for the WT and JNK1/2KO cells. We also thank Dr. B. Moss (NIAID, Bethesda, MD, USA) for kindly providing us with VACV WR and VACV F13L-GFP. We deeply thank Angela S. Lopes, Ilda M. V. Gama (in memorian), Maria A. Souza, João R. dos Santos, and Paula Marinho for their secretarial/technical assistance. F. G. G. L., A. A. T., A. F. P., J. A. P. S. M. and A. C. T. C. P. were recipients of pre-doctoral fellowships from CNPq/CAPES. De Oliveira, L. C. is recipient of a research fellowship from FAPEMIG. C. A. B., E. G. K., G. S. T. and J. S. A are recipients of CNPq research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio A. Bonjardim.

Ethics declarations

Funding

This study was funded by the Fundação para o Desenvolvimento da Ciência do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq)/BRAZIL.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, F.G.G., Torres, A.A., De Oliveira, L.C. et al. c-Jun integrates signals from both MEK/ERK and MKK/JNK pathways upon vaccinia virus infection. Arch Virol 162, 2971–2981 (2017). https://doi.org/10.1007/s00705-017-3446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3446-6

Navigation