Archives of Virology

, Volume 162, Issue 8, pp 2473–2476 | Cite as

Molecular characterization of a novel bipartite begomovirus isolated from Lycianthes biflora in China

  • Y. F. Tang
  • Z. F. HeEmail author
  • J. K. Brown
  • X. M. She
  • G. B. Lan
Annotated Sequence Record


A bipartite begomovirus isolate GD was isolated from Lycianthes biflora plants showing yellow mosaic symptoms in Nanxiong, Guangdong Province, China. The apparently full-length DNA-A and DNA-B viral components were cloned after enrichment of circular DNA by rolling circle amplification, restriction digestion, cloning, and DNA sequencing. The DNA-A component (2752nt, KT582302) shares highest (80.2%) nucleotide (nt) sequence identity with tomato leaf curl Sulawesi virus [Indonesia-Sulawesi-Langowan F101-2006] (ToLCSuV- [ID-Sul -LanF09-06], FJ237618), reported in Indonesia as causing yellow leaf curl disease of chilli pepper. The DNA-B component (2704nt, KT582303) shares highest (76.3%) nt sequence identity with pepper yellow leaf curl Indonesia virus-[Indonesia-tomato2-2005] (PepYLCIV-[ID-Tom2-05 AB213599) reported in Indonesia, and associated with yellow leaf curl disease in tomato. Based on the ICTV guidelines for begomoviral species demarcation, the virus is a new, previously undescribed bipartite begomovirus species for which the name “Lycianthes yellow mosaic virus” is proposed.


Yellow Leaf Chilli Pepper Bipartite Begomoviruses Bipartite Begomovirus Yellow Mosaic Symptom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the National Natural Science Foundation of China (No. 31501606), Guangdong Provincial Natural Science Foundation of China (No. 2014A030313571), the Science and Technology Program of Guangdong, China (No. 2014B070706017) and the President funds of Guangdong Academy of Agricultural Sciences of China (201424).

Compliance with ethical standards

Conflict of interest

All of the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Varma A, Mandal B, Singh MK (2011) Global emergence and spread of whitefly (Bemisia tabaci) transmitted Geminiviruses. In: Thompson WMO (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, The Netherlands, pp 205–292CrossRefGoogle Scholar
  2. 2.
    Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a New World monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87:5397–5413CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Márquez-Martín B, Aragón-Caballero L, Fiallo-Olivé E, Navas-Castillo J, Moriones E (2011) Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru. Eur J Plant Pathol 129:1–7CrossRefGoogle Scholar
  4. 4.
    Sánchez-Campos S, Martínez-Ayala A, Márquez-Martín B, Aragón-Caballero L, Navas-Castillo J, Moriones E (2013) Fulfilling Koch’s postulates confirms the monopartite nature of tomato leaf deformation virus, a begomovirus native to the New World. Virus Res 173:286–293CrossRefPubMedGoogle Scholar
  5. 5.
    Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci 97:6890–6895CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121CrossRefPubMedGoogle Scholar
  7. 7.
    Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar Y, Abdel-Salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324:462–474CrossRefPubMedGoogle Scholar
  8. 8.
    Zhou XP, Xie Y, Tao X, Zhang Z, Li Z, Fauquet CM (2003) Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247CrossRefPubMedGoogle Scholar
  9. 9.
    Xie Y, Wu PJ, Liu P, Gong HR, Zhou XP (2010) Characterization of alphasatellites associated with monopartite begomovirus/betasatellite complexes in Yunnan, China. Virol J 7:178–187CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210CrossRefPubMedGoogle Scholar
  11. 11.
    Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  12. 12.
    Wyatt SD, Brown JK (1996) Detection of subgroup III geminivirus isolates inleaf extracts by degenerate primers and polymerase chain reaction. Phytopathology 86:1288–1293CrossRefGoogle Scholar
  13. 13.
    He ZF, Yu H, Luo FF (2004) Detection of whitefly-transmitted geminivirusesfrom tomato by PCR. Virol Sinca 19:67–69Google Scholar
  14. 14.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  15. 15.
    Muhire B, Varsani A, Martin DP (2014) SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stenger DC, Revington GN, Stevenson MC, Bisaro DM (1991) Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci 88:8029–8803CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tsai WS, Shih SL, Green SK, Lee LM, Luther GC, Ratulangi MM, Sembel DT, Jan FJ (2009) Identification of a new begomovirus associated with yellow leaf curl diseases of tomato and pepper in Sulawesi, Indonesia. Plant Dis 93:321CrossRefGoogle Scholar
  19. 19.
    Kon T, Hidayat SH, Ito K, Hase S, Takahashi H, Ikegami M (2005) Begomoviruses associated with leaf curl disease of tomato in Java, Indonesia. J Phytopathol 153:562–566CrossRefGoogle Scholar
  20. 20.
    Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA β. Mol Biotechnol 20:315–318CrossRefPubMedGoogle Scholar
  21. 21.
    Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JC, Briddon RW, Fiallo-Olive´ E, Herna´ndez-Zepeda C, Idris A, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani A (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Y. F. Tang
    • 1
    • 2
  • Z. F. He
    • 1
    • 2
    Email author
  • J. K. Brown
    • 3
  • X. M. She
    • 1
  • G. B. Lan
    • 1
  1. 1.Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhouChina
  3. 3.School of Plant SciencesThe University of ArizonaTucsonUSA

Personalised recommendations