Skip to main content
Log in

Genetic properties and pathogenicity of a novel reassortant H10N5 influenza virus from wild birds

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this study, we analyzed the genome of a H10N5 influenza virus from wild birds. This virus was identified as a novel reassortant virus with internal genes from multiple subtypes and of distinct origins. After sequential passage in mice, mouse-adapted viruses bearing mutations PB2-E627K and HA-G218E were generated. These viruses caused dramatic body weight loss and death, and also replicated in mouse brain, suggesting that the pathogenicity of low pathogenic H10N5 in chickens can be enhanced after passage in mammals. Our data imply that H10N5 viruses might be a potential risk to human health therefore it is important to undertake continued surveillance and biosecurity evaluation of these viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Arzey GG, Kirkland PD, Arzey KE, Frost M, Maywood P, Conaty S, Hurt AC, Deng YM, Iannello P, Barr I, Dwyer DE, Ratnamohan M, McPhie K, Selleck P (2012) Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis 18:814–816

    Article  PubMed  PubMed Central  Google Scholar 

  2. Belser JA, Tumpey TM (2013) H5N1 pathogenesis studies in mammalian models. Virus Res 178:168–185

    Article  CAS  PubMed  Google Scholar 

  3. Bonfante F, Fusaro A, Zanardello C, Patrono LV, De Nardi R, Maniero S, Terregino C (2014) Lethal nephrotropism of an H10N1 avian influenza virus stands out as an atypical pathotype. Vet Microbiol 173:189–200

    Article  CAS  PubMed  Google Scholar 

  4. Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou J, Zou S, Yang L, Chen T, Dong L, Bo H, Zhao X, Zhang Y, Lan Y, Bai T, Dong J, Li Q, Wang S, Zhang Y, Li H, Gong T, Shi Y, Ni X, Li J, Zhou J, Fan J, Wu J, Zhou X, Hu M, Wan J, Yang W, Li D, Wu G, Feng Z, Gao GF, Wang Y, Jin Q, Liu M, Shu Y (2014) Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383:714–721

    Article  PubMed  Google Scholar 

  5. Deng G, Shi J, Wang J, Kong H, Cui P, Zhang F, Tan D, Suzuki Y, Liu L, Jiang Y, Guan Y, Chen H (2015) Genetics, receptor binding, and virulence in mice of H10N8 influenza viruses isolated from ducks and chickens in live poultry markets in China. J Virol 89:6506–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Englund L, Hard af Segerstad C (1998) Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison). Arch Virol 143:653–666

    Article  CAS  PubMed  Google Scholar 

  7. Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, Guan Y, Bu Z, Kawaoka Y, Chen H (2009) Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 384:28–32

    Article  CAS  PubMed  Google Scholar 

  8. Feldmann H, Kretzschmar E, Klingeborn B, Rott R, Klenk HD, Garten W (1988) The structure of serotype H10 hemagglutinin of influenza A virus: comparison of an apathogenic avian and a mammalian strain pathogenic for mink. Virology 165:428–437

    Article  CAS  PubMed  Google Scholar 

  9. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842

    Article  CAS  PubMed  Google Scholar 

  10. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82:1146–1154

    Article  CAS  PubMed  Google Scholar 

  11. Kayali G, Ortiz EJ, Chorazy ML, Gray GC (2010) Evidence of previous avian influenza infection among US turkey workers. Zoonoses Public Health 57:265–272

    Article  CAS  PubMed  Google Scholar 

  12. Kim HR, Lee YJ, Oem JK, Bae YC, Kang MS, Kang HM, Choi JG, Park CK, Kwon YK (2012) Characterization of H10 subtype avian influenza viruses isolated from wild birds in South Korea. Vet Microbiol 161:222–228

    Article  CAS  PubMed  Google Scholar 

  13. Klingeborn B, Englund L, Rott R, Juntti N, Rockborn G (1985) An avian influenza A virus killing a mammalian species–the mink. Brief report. Arch Virol 86:347–351

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma C, Lam TT, Chai Y, Wang J, Fan X, Hong W, Zhang Y, Li L, Liu Y, Smith DK, Webby RJ, Peiris JS, Zhu H, Guan Y (2015) Emergence and evolution of H10 subtype influenza viruses in poultry in China. J Virol 89:3534–3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maruyama J, Nao N, Miyamoto H, Maeda K, Ogawa H, Yoshida R, Igarashi M, Takada A (2016) Characterization of the glycoproteins of bat-derived influenza viruses. Virology 488:43–50

    Article  CAS  PubMed  Google Scholar 

  18. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK (2009) The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 83:12325–12335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vachieri SG, Xiong X, Collins PJ, Walker PA, Martin SR, Haire LF, Zhang Y, McCauley JW, Gamblin SJ, Skehel JJ (2014) Receptor binding by H10 influenza viruses. Nature 511:475–477

    Article  CAS  PubMed  Google Scholar 

  20. Vijaykrishna D, Deng YM, Su YC, Fourment M, Iannello P, Arzey GG, Hansbro PM, Arzey KE, Kirkland PD, Warner S, O’Riley K, Barr IG, Smith GJ, Hurt AC (2013) The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses. J Virol 87:10182–10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Zhang W, Qi J, Wang F, Zhou J, Bi Y, Wu Y, Sun H, Liu J, Huang C, Li X, Yan J, Shu Y, Shi Y, Gao GF (2015) Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Nat Commun 6:5600

    Article  CAS  PubMed  Google Scholar 

  22. Wang N, Zou W, Yang Y, Guo X, Hua Y, Zhang Q, Zhao Z, Jin M (2012) Complete genome sequence of an H10N5 avian influenza virus isolated from pigs in central China. J Virol 86:13865–13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu H, Lu R, Wu X, Peng X, Xu L, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N (2015) Isolation and characterization of a novel H10N2 avian influenza virus from a domestic duck in Eastern China. Infect Genet Evol 29:1–5

    Article  PubMed  Google Scholar 

  24. Yu Z, Cheng K, Sun W, Zhang X, Li Y, Wang T, Wang H, Zhang Q, Xin Y, Xue L, Zhang K, Huang J, Yang S, Qin C, Wilker PR, Yue D, Chen H, Gao Y, Xia X (2015) A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology 486:180–186

    Article  CAS  PubMed  Google Scholar 

  25. Yu Z, Sun W, Li X, Chen Q, Chai H, Gao X, Guo J, Zhang K, Wang T, Feng N, Zheng X, Wang H, Zhao Y, Qin C, Huang G, Yang S, Hua Y, Zhang X, Gao Y, Xia X (2015) Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice. Virology 476:233–239

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, de Vries RP, Tzarum N, Zhu X, Yu W, McBride R, Paulson JC, Wilson IA (2015) A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. Cell Host Microbe 17:377–384

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, Deng G, Yu K, Yang C, Bu Z, Kawaoka Y, Chen H (2008) A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol 82:220–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyun Zhu.

Ethics declarations

Funding

This work was supported by funding from the National Key R&D program (2016YFD0500207, 2016YFD0500201) and the National Natural Science Foundation of China (81571998). Jie Cui is supported by the CAS Pioneer Hundred Talents Program.

Conflict of interest

All authors have read the manuscript and the authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants. The animal studies were conducted within the animal biosafety level 3 (ABSL3) facilities in the Lanzhou Veterinary Research Institute (LVRI) of Chinese Academy of Agricultural Sciences (CAAS). The protocols for animal studies were approved by the Committee on the Ethics of Animal Experiments of LVRI.

Additional information

Y. Jia and J. Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2017_3234_MOESM1_ESM.pdf

Figure S1: Phylogenetic analysis of A/wild bird/Hunan/270/2014 HA and NA genes. The evolutionary history was inferred using HA (A) and NA (B) gene alignments. The tree is drawn to scale with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed and are in units of the number of base substitutions per site. The rate variation among sites was modeled by gamma distribution. The coding regions of HA and NA genes were used (n = 64 sequences) for phylogenetic analysis. Bootstrap values lower than 70% are not shown. The H10N5 isolated in this study is highlighted in both HA and NA trees. (PDF 639 kb)

Supplementary material 2 (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Yang, J., Wang, Z. et al. Genetic properties and pathogenicity of a novel reassortant H10N5 influenza virus from wild birds. Arch Virol 162, 1349–1353 (2017). https://doi.org/10.1007/s00705-017-3234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3234-3

Keywords

Navigation