Archives of Virology

, Volume 162, Issue 2, pp 449–456 | Cite as

Discovery of herpesviruses in Canadian wildlife

  • Chimoné S. Dalton
  • Karen van de Rakt
  • Åsa Fahlman
  • Kathreen Ruckstuhl
  • Peter Neuhaus
  • Richard Popko
  • Susan Kutz
  • Frank van der Meer
Original Article
  • 161 Downloads

Abstract

Herpesviruses (HVs) have a wide range of hosts in the animal kingdom. The result of infection with HVs can vary from asymptomatic to fatal diseases depending on subtype, strain, and host. To date, little is known about HVs naturally circulating in wildlife species and the impact of these viruses on other species. In our study, we used genetic and comparative approaches to increase our understanding of circulating HVs in Canadian wildlife. Using nested polymerase chain reaction targeting a conserved region of the HV DNA polymerase gene, we analyzed material derived from wildlife of western and northern Canada collected between February 2009 and Sept 2014. For classification of new virus sequences, we compared our viral sequences with published sequences in GenBank to identify conserved residues and motifs that are unique to each subfamily, alongside phylogenetic analysis. All alphaherpesviruses shared a conserved tryptophan (W856) and tyrosine (Y880), betaherpesviruses all shared a serine (S836), and gammaherpesviruses had a conserved glutamic acid (E835). Most of our wildlife HV sequences grouped together with HVs from taxonomically related host species. From Martes americana, we detected previously uncharacterized alpha- and beta-herpesviruses.

References

  1. 1.
    McGeoch DJ, Gatherer D (2005) Integrating reptilian herpesviruses into the family Herpesviridae. J Virol 79:725–731CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117:90–104CrossRefPubMedGoogle Scholar
  3. 3.
    Wang N, Baldi PF, Gaut BS (2007) Phylogenetic analysis, genome evolution and the rate of gene gain in the Herpesviridae. Mol Phylogenet Evol 43(3):1066–1075CrossRefPubMedGoogle Scholar
  4. 4.
    Blake N (2010) Immune evasion by gammaherpesvirus genome maintenance proteins. J Gen Virol 91(4):829–846CrossRefPubMedGoogle Scholar
  5. 5.
    McGeoch DJ, Cook S, Dolan A, Jamieson FE, Telford EA (1995) Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol 247:443–458CrossRefPubMedGoogle Scholar
  6. 6.
    McGeoch DJ, Dolan A, Ralph AC (2000) Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wald A, Corey L (2007) Persistence in the population: epidemiology, transmission. In: Arvin A et al (ed) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, ch 36Google Scholar
  8. 8.
    Lankester F, Lugelo A, Kazwala R, Keyyu J, Cleaveland S, Yoder J (2015) The economic impact of malignant catarrhal fever on pastoralist livelihoods. PLoS One 10(1):e0116059CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mlilo D, Mhlanga M, Mwembe R, Sisito G, Moyo B, Sibanda B (2015) The epidemiology of malignant catarrhal fever (MCF) and contribution to cattle losses in farms around Rhodes Matopos National Park, Zimbabwe. Trop Anim Health Prod 47(5):989–994CrossRefPubMedGoogle Scholar
  10. 10.
    Tessaro SV, Deregt D, Dzus E, Rohner C, Smith K, Gaboury T (2005) Herpesvirus infection in woodland caribou in Alberta, Canada. J Wild Dis 41(4):803–805CrossRefGoogle Scholar
  11. 11.
    Garver KA, Al-Hussinee L, Hawley LM, Schroeder T, Edes S, LePage V et al (2010) Mass mortality associated with koi herpesvirus in wild common carp in Canada. J Wild Dis 46(4):1242–1251CrossRefGoogle Scholar
  12. 12.
    Himworth CG, Haulena M, Lambourn DM, Gaydos JK, Huggins J, Calambokidis J et al (2010) Pathology and epidemiology of Phocid herpesvirus-1 in wild and rehabilitating harbor seals (Phoca vitulina richardsi) in the northeastern Pacific. J Wild Dis 46(3):1046–1051CrossRefGoogle Scholar
  13. 13.
    Gailbreath K, Oaks L (2008) Herpesviral inclusion body disease in owls and falcons is caused by the pigeon herpesvirus (Columbid herpesvirus 1). J Wildl Dis 44:427–433CrossRefPubMedGoogle Scholar
  14. 14.
    Rose N, Warren AL, Whiteside D, Bidulka J, Robinson JH, Illanes O, Brookfield C (2012) Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta. Can Vet J 53:265–268PubMedPubMedCentralGoogle Scholar
  15. 15.
    Brown M, Moore L, McMahon B, Powell D, LaBute M, Hyman JM et al (2015) Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks. PLoS One 10(5):e0124037CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vandevanter DR, Warrener P, Bennett L, Schultz ER, Coulter S, Garber RL et al (1996) Detection and analysis of diverse herpesviral species by consensus primer PCR. J Clin Microbiol 34(7):1666–1671PubMedPubMedCentralGoogle Scholar
  17. 17.
    Bennett N, Götte M (2013) Utility of bacteriophage RB69 polymerase gp43 as a surrogate enzyme for herpesvirus orthologs. Viruses 5:54–86CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 28(43):D222. doi:10.1093/nar/gku1221 CrossRefGoogle Scholar
  19. 19.
    Ye L-B, Huang E (1993) In vitro expression of the human cytomegalovirus DNApolymerase gene: Effects of sequence alterations on enzyme activity. J. Virol 67:6339–6347PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinf 28(12):1647–1649CrossRefGoogle Scholar
  21. 21.
    NCBI (2013) National Center for Biotechnology Information BLAST home. http://blast.ncbi.nlm.nih.gov/Blast.cgi
  22. 22.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high 180 throughput. Nucleic Acids Res 32(5):1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stamatakis A (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinf 30(9):1312–1313CrossRefGoogle Scholar
  24. 24.
    Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Adv Neur Inf Proc Sys (NIPS). http://sourceforge.net/projects/figtree/
  25. 25.
    Li H, Gailbreath K, Flach EJ, Taus NS, Cooley J, Keller J et al (2005) A novel subgroup of rhadinoviruses in ruminants. J Gen Virol 86:3021–3026CrossRefPubMedGoogle Scholar
  26. 26.
    das Neves CG, Ihlebaek HM, Skjerve E, Hemmingsen W, Li H, Tryland M (2013) Gammaherpesvirus infection in semi-domesticated reindeer (Rangifer tarandus tarandus): a cross-sectional, serologic study in northern Norway. J Wild Dis 49(2):261–269Google Scholar
  27. 27.
    COSEWIC (2011) Designatable units for caribou (Rangifer tarandus) in Canada. Committee on the Status of Endangered Wildlife in Canada: Ottawa, p 88. http://www.cosewic.gc.ca/eng/sct12/COSEWIC_Caribou_DU_Report_23Dec2011.pdf
  28. 28.
    Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C (2014) Genetic diversity in caribou linked to past and future climate change. Nat Clim Change 4:132–137CrossRefGoogle Scholar
  29. 29.
    Levi T, Wilmers CC (2012) Wolves-coyotes-foxes: a cascade among carnivores. Ecology 93(4):921–929CrossRefPubMedGoogle Scholar
  30. 30.
    Broquet T, Johnson CA, Petit E, Thompson I, Burel F, Fryxell JM (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15(6):1689–1697CrossRefPubMedGoogle Scholar
  31. 31.
    Larder BA, Kemp SD, Darby G (1987) Related functional domains in virus DNA polymerases. EMBO J 6(1):169–175PubMedPubMedCentralGoogle Scholar
  32. 32.
    Plumb JA, Wright LD, Jones VL (1973) Survival of channel catfish virus in chilled, frozen, and decomposing channel catfish. Progress Fish Culturist 35:170–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Chimoné S. Dalton
    • 1
  • Karen van de Rakt
    • 1
  • Åsa Fahlman
    • 2
  • Kathreen Ruckstuhl
    • 3
  • Peter Neuhaus
    • 3
  • Richard Popko
    • 4
  • Susan Kutz
    • 1
    • 5
  • Frank van der Meer
    • 1
  1. 1.Department of Ecosystem and Public Health, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Department of Clinical Sciences, Faculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Biological Sciences, Faculty of ScienceUniversity of CalgaryCalgaryCanada
  4. 4.Environment and natural Resources Sahtú RegionNorman WellsCanada
  5. 5.Canadian Wildlife Health Cooperative, Alberta Node, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations